【原创】大数据基础之Benchmark(1)HiBench

HiBench 7
官方:https://github.com/intel-hadoop/HiBench

一 简介

HiBench is a big data benchmark suite that helps evaluate different big data frameworks in terms of speed, throughput and system resource utilizations. It contains a set of Hadoop, Spark and streaming workloads, including Sort, WordCount, TeraSort, Sleep, SQL, PageRank, Nutch indexing, Bayes, Kmeans, NWeight and enhanced DFSIO, etc. It also contains several streaming workloads for Spark Streaming, Flink, Storm and Gearpump.

There are totally 19 workloads in HiBench.

Supported Hadoop/Spark/Flink/Storm/Gearpump releases:

Hadoop: Apache Hadoop 2.x, CDH5, HDP
Spark: Spark 1.6.x, Spark 2.0.x, Spark 2.1.x, Spark 2.2.x
Flink: 1.0.3
Storm: 1.0.1
Gearpump: 0.8.1
Kafka: 0.8.2.2

二 spark sql测试

1 download

$ wget https://github.com/intel-hadoop/HiBench/archive/HiBench-7.0.tar.gz
$ tar xvf HiBench-7.0.tar.gz
$ cd HiBench-HiBench-7.0

2 build

1)build all

$ mvn -Dspark=2.1 -Dscala=2.11 clean package

2)build hadoopbench and sparkbench

$ mvn -Phadoopbench -Psparkbench -Dspark=2.1 -Dscala=2.11 clean package

3)only build spark sql

$ mvn -Psparkbench -Dmodules -Psql -Dspark=2.1 -Dscala=2.11 clean package

3 prepare

$ cp conf/hadoop.conf.template conf/hadoop.conf
$ vi conf/hadoop.conf

$ cp conf/spark.conf.template conf/spark.conf
$ vi conf/spark.conf

$ vi conf/hibench.conf
# Data scale profile. Available value is tiny, small, large, huge, gigantic and bigdata.
# The definition of these profiles can be found in the workload‘s conf file i.e. conf/workloads/micro/wordcount.conf
hibench.scale.profile bigdata

4 run

sql测试分为3种:scan/aggregation/join

$ bin/workloads/sql/scan/prepare/prepare.sh
$ bin/workloads/sql/scan/spark/run.sh

prepare之后会在hdfs的/HiBench/Scan/Input下生成测试数据,在report/scan/prepare/下生成报告
run之后会在report/scan/spark/下生成报告,比如monitor.html,在hive的default库下可以看到测试数据表

$ bin/workloads/sql/join/prepare/prepare.sh
$ bin/workloads/sql/join/spark/run.sh

$ bin/workloads/sql/aggregation/prepare/prepare.sh
$ bin/workloads/sql/aggregation/spark/run.sh

依此类推

参考:
https://github.com/intel-hadoop/HiBench/blob/master/docs/build-hibench.md
https://github.com/intel-hadoop/HiBench/blob/master/docs/run-sparkbench.md

原文地址:https://www.cnblogs.com/barneywill/p/10436299.html

时间: 2024-10-17 17:07:44

【原创】大数据基础之Benchmark(1)HiBench的相关文章

区块链这些技术与h5房卡斗牛平台出售,大数据基础软件干货不容错过

在IT产业发展中,包括CPU.操作系统h5房卡斗牛平台出售 官网:h5.super-mans.com 企娥:2012035031 vx和tel:17061863513 h5房卡斗牛平台出售在内的基础软硬件地位独特,不但让美国赢得了产业发展的先机,成就了产业巨头,而且因为技术.标准和生态形成的壁垒,主宰了整个产业的发展.错失这几十年的发展机遇,对于企业和国家都是痛心的. 当大数据迎面而来,并有望成就一个巨大的应用和产业机会时,企业和国家都虎视眈眈,不想错再失这一难得的机遇.与传统的IT产业一样,大

大数据基础教程:创建RDD的二种方式

大数据基础教程:创建RDD的二种方式 1.从集合中创建RDD val conf = new SparkConf().setAppName("Test").setMaster("local")      val sc = new SparkContext(conf)      //这两个方法都有第二参数是一个默认值2  分片数量(partition的数量)      //scala集合通过makeRDD创建RDD,底层实现也是parallelize      val 

【原创】大数据基础之Impala(1)简介、安装、使用

impala2.12 官方:http://impala.apache.org/ 一 简介 Apache Impala is the open source, native analytic database for Apache Hadoop. Impala is shipped by Cloudera, MapR, Oracle, and Amazon. impala是hadoop上的开源分析性数据库: Do BI-style Queries on Hadoop Impala provides

“大数据“基础知识普及

大数据,官方定义是指那些数据量特别大.数据类别特别复杂的数据集,这种数据集无法用传统的数据库进行存储,管理和处理.大数据的主要特点为数据量大(Volume),数据类别复杂(Variety),数据处理速度快(Velocity)和数据真实性高(Veracity),合起来被称为4V. 大数据中的数据量非常巨大,达到了PB级别.而且这庞大的数据之中,不仅仅包括结构化数据(如数字.符号等数据),还包括非结构化数据(如文本.图像.声音.视频等数据).这使得大数据的存储,管理和处理很难利用传统的关系型数据库去

大数据基础架构详解

简介:本文是对大数据领域的基础论文的阅读总结,相关论文包括GFS,MapReduce.BigTable.Chubby.SMAQ. 大数据出现的原因: 大多数的技术突破来源于实际的产品需要,大数据最初诞生于谷歌的搜索引擎中.随着web2.0时代的发展,互联网上数据量呈献爆炸式的增长,为了满足信息搜索的需要,对大规模数据的存储提出了非常强劲的需要.基于成本的考虑,通过提升硬件来解决大批量数据的搜索越来越不切实际,于是谷歌提出了一种基于软件的可靠文件存储体系GFS,使用普通的PC机来并行支撑大规模的存

图说大数据基础

大数据开发基础上之图说笔记 1.Hadoop2概览 1.1Hadoop2的组成.演化: 1.2Hadoop2.0——Hadoop1.0演化与改进: 2.HDFS系统概览 2.1HDFS系统的主要特性与适用场景: 2.2HDFS的体系结构: 2.3HDFS的构成 2.4HDFS的读流程: 2.5HDFS创建子路径流程: 2.6写流程和删除流程 3 YARN概览 3.1Hadoop1.x中的MapReduce构成及特点: 3.2 Yarn的结构图和主要组件: 3.3 YARN的工作流程图: 4 Ma

学完大数据基础,可以按照我写的顺序学下去

首先给大家介绍什么叫大数据,大数据最早是在2006年谷歌提出来的,百度给他的定义为巨量数据集合,辅相成在今天大数据技术任然随着互联网的发展,更加迅速的成长,小到个人,企业,达到国家安全,大数据的作用可见一斑,也就是近几年大数据这个概念,随着云计算的出现才凸显出其价值,云计算与大数据的关系就像硬币的正反面一样,相密不可分.但是大数据的人才缺失少之又少,这就拖延了大数据的发展.所以人才培养真的很重要. 大数据的定义.大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具

分分钟理解大数据基础之Spark

一背景 Spark 是 2010 年由 UC Berkeley AMPLab 开源的一款 基于内存的分布式计算框架,2013 年被Apache 基金会接管,是当前大数据领域最为活跃的开源项目之一 Spark 在 MapReduce 计算框架的基础上,支持计算对象数据可以直接缓存到内存中,大大提高了整体计算效率.特别适合于数据挖掘与机器学习等需要反复迭代计算的场景. 二特性 高效:Spark提供 Cache 机制,支持需要反复迭代的计算或者多次数据共享,基于Spark 的内存计算比 Hadoop

大数据基础学习

什么是大数据? 举例: 1.商品推荐:问题: (1)大量的订单如何存储? (2)大量的订单如何计算? 2.天气预报:问题: (1)大量的天气数据如何存储? (2)大量的天气数据如何计算? 如果你想要学好大数据最好加入一个好的学习环境,可以来这个Q群251956502 这样大家学习的话就比较方便,还能够共同交流和分享资料 什么是大数据,本质? (1)数据的存储:分布式文件系统(分布式存储) (2)数据的计算:分布式计算 Java和大数据是什么关系? 1.Hadoop:基于Java语言开发 2.Sp