A sequence X_1, X_2, ..., X_n
is fibonacci-like if:
n >= 3
X_i + X_{i+1} = X_{i+2}
for alli + 2 <= n
Given a strictly increasing array A
of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A
. If one does not exist, return 0.
(Recall that a subsequence is derived from another sequence A
by deleting any number of elements (including none) from A
, without changing the order of the remaining elements. For example, [3, 5, 8]
is a subsequence of [3, 4, 5, 6, 7, 8]
.)
Example 1:
Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8].
Example 2:
Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].
Note:
3 <= A.length <= 1000
1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9
- (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
Idea 1. Bruteforce, the key is two adjancent terms determins the next term, thought of using just one term ending at i and extending it, then realised that one term is not enough, two terms are needed. Starting with all pairs of terms (A[i] and A[j], 0 < i < j < A.length), (first, second) -> (second, first + second), build the array into a set and so we can quickly check if first+second exits or not.
Time complexity: O(N^2logM), M = max(A), since facotrial sequence is in exponential sequence, there are at most logM terms in the sequence.
Space complexity: O(N)
1 class Solution { 2 public int lenLongestFibSubseq(int[] A) { 3 Set<Integer> target = Arrays.stream(A).boxed().collect(Collectors.toSet()); 4 5 int result = 0; 6 for(int i = 0; i < A.length; ++i) { 7 for(int j = i+1; j < A.length; ++j) { 8 int second = A[i] + A[j]; 9 int first = A[j]; 10 int curr = 2; 11 while(target.contains(second)) { 12 int temp = second; 13 second = first + second; 14 first = temp; 15 ++curr; 16 } 17 result = Math.max(result, curr); 18 } 19 } 20 21 return result >= 3? result: 0; 22 } 23 }
Idea 2. Dynamic programming, since one term is not enough to extend the solution, why not use two terms? Let dp[i][j] represents the length of sequence ending at A[i] and A[j], to extend it
dp[j][k] = dp[i][j] + 1 when A[k] = A[i] + A[j]
dp[j][k] = 2
Time complexity: O(n^2)
Space complexity: O(n^2)
class Solution { public int lenLongestFibSubseq(int[] A) { Map<Integer, Integer> index = new HashMap<>(); for(int i = 0; i < A.length; ++i) { index.put(A[i], i); } int result = 0; int[][] dp = new int[A.length][A.length]; for(int k = 2; k < A.length; ++k) { for(int j = 1; j < k; ++j) { int i = index.getOrDefault(A[k] - A[j], A.length); if(i < j) { dp[j][k] = dp[i][j] + 1; result = Math.max(result, dp[j][k]); } } } return result >= 1? result + 2: 0; } }
Idea 2.b save the map to store index, use two sum for sorted array
Time complexity: O(N^2)
Space complexity: O(N^2) or O(NlogM), M = max(A), worst case N = logM
1 class Solution { 2 public int lenLongestFibSubseq(int[] A) { 3 int result = 0; 4 Map<Integer, Integer> longest = new HashMap<>(); 5 int N = A.length; 6 for(int k = 2; k < A.length; ++k) { 7 for(int i = 0, j = k-1; i < j; ) { 8 if(A[i] + A[j] == A[k]) { 9 int cnt = longest.getOrDefault(i*N + j, 0) + 1; 10 longest.put(j*N + k, cnt); 11 result = Math.max(result, cnt); 12 ++i; 13 --j; 14 } 15 else if(A[i] + A[j] > A[k]) { 16 --j; 17 } 18 else { 19 ++i; 20 } 21 } 22 } 23 24 return result >= 1? result + 2: 0; 25 } 26 }
原文地址:https://www.cnblogs.com/taste-it-own-it-love-it/p/10804246.html