机器学习直接放弃

机器学习直接放弃的相关文章

机器学习从入门到放弃

推荐台大林轩田的基石和技法 其实还有caltech一个教授的视频,个人觉得讲得比林轩田好,林轩田的老板,埃及人,口音略重 上面3个视频的教材是learn from data,CSDN上有完整版下载(https://download.csdn.net/download/shiyih/9671865),包括原版和后面增补的电子版 看ng视频,推荐斯坦福的黑板教学 图解机器学习,李航的统计学习,ISLR 周志华那本真心不!推!荐!用来自学,感觉就是个武器谱,每个知识点只蜻蜓点水一般 B站上国科大去年模

美丽联合业务升级下的机器学习应用

通常机器学习在电商领域有三大应用,推荐.搜索.广告,这次我们聊聊三个领域里都会涉及到的商品排序问题.从业务角度,一般是在一个召回的商品集合里,通过对商品排序,追求GMV或者点击量最大化.进一步讲,就是基于一个目标,如何让流量的利用效率最高.很自然的,如果我们可以准确预估每个商品的GMV转化率或者点击率,就可以最大化利用流量,从而收益最大. 蘑菇街是一个年轻女性垂直电商平台,主要从事服饰鞋包类目,2015年时全年GMV超过了百亿,后与美丽说合并后公司更名为美丽联合集团.2014年时入职蘑菇街,那时

机器学习实战------利用logistics回归预测病马死亡率

大家好久不见,实战部分一直托更,很不好意思.本文实验数据与代码来自机器学习实战这本书,倾删. 一:前期代码准备 1.1数据预处理 还是一样,设置两个数组,前两个作为特征值,后一个作为标签.当然这是简单的处理,实际开发中特征值都是让我们自己选的,所以有时候对业务逻辑的理解还是很重要的. 1.2 sigmoid函数设置 1.3固定步长梯度上升算法 这段代码见一面1.4节. Alpha表示步长,maxcycles表示最大的迭代次数,其中weights=ones((n,1))是初始化一个全部为一的n*1

8个经过证实的方法:提高机器学习模型的准确率

来自 http://datartisan.com/article/detail/74.html 导语: 提升一个模型的表现有时很困难.如果你们曾经纠结于相似的问题,那我相信你们中很多人会同意我的看法.你会尝试所有曾学习过的策略和算法,但模型正确率并没有改善.你会觉得无助和困顿,这是90%的数据科学家开始放弃的时候. 不过,这才是考验真本领的时候!这也是普通的数据科学家跟大师级数据科学家的差距所在.你是否曾经梦想过成为大师级的数据科学家呢? 如果是的话,你需要这 8 个经过证实的方法来重构你的模型

[转载]从机器学习谈起

在本篇文章中,我将对机器学习做个概要的介绍.本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践.这篇文档也算是EasyPR开发的番外篇,从这里开始,必须对机器学习了解才能进一步介绍EasyPR的内核.当然,本文也面对一般读者,不会对阅读有相关的前提要求. 在进入正题前,我想读者心中可能会有一个疑惑:机器学习有什么重要性,以至于要阅读完这篇非常长的文章呢? 我并不直接回答这个问题前.相反,我想请大家看两张图,下图是图一:  图1 机器学习界的执牛耳者与互联网界的大鳄的联

转载计算机的潜意识的文章:机器学习的入门级经典读物

在本篇文章中,我将对机器学习做个概要的介绍.本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践.这篇文档也算是EasyPR开发的番外篇,从这里开始,必须对机器学习了解才能进一步介绍EasyPR的内核.当然,本文也面对一般读者,不会对阅读有相关的前提要求. 在进入正题前,我想读者心中可能会有一个疑惑:机器学习有什么重要性,以至于要阅读完这篇非常长的文章呢? 我并不直接回答这个问题前.相反,我想请大家看两张图,下图是图一:  图1 机器学习界的执牛耳者与互联网界的大鳄的联

机器学习算法总结--SVM

简介 SVM是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,即支持向量机的学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解.或者简单的可以理解为就是在高维空间中寻找一个合理的超平面将数据点分隔开来,其中涉及到非线性数据到高维的映射以达到数据线性可分的目的. 训练数据线性可分时,通过硬间隔最大化,学习一个线性分类器,即线性可分支持向量机,又称为硬间隔支持向量机:训练数据近似线性可分时,通过软间隔最大化,也学习一个线性分类器,即线性支持向量机,也称为软间隔支持向量机

推荐文章:机器学习:“一文读懂机器学习,大数据/自然语言处理/算法全有了

PS:文章主要转载自CSDN大神"黑夜路人"的文章:          http://blog.csdn.NET/heiyeshuwu/article/details/43483655      本文主要对机器学习进行科普,包括机器学习的定义.范围.方法,包括机器学习的研究领域:模式识别.计算机视觉.语音识别.自然语言处理.统计学习和数据挖掘.这是一篇非常好的文章,尤其感学原文作者~          http://www.thebigdata.cn/JieJueFangAn/1308

斯坦福大学Andrew Ng教授主讲的《机器学习》公开课观后感

课程设置和内容 视频课程分为20集,每集72-85分钟.实体课程大概一周2次,中间还穿插助教上的习题课,大概一个学期的课程. 内容涉及四大部分,分别是:监督学习(2-8集).学习理论(9集-11集).无监督学习(12-15集).强化学习(16-20集).监督学习和无监督学习,基本上是机器学习的二分法:强化学习位于两者之间:而学习理论则从总体上介绍了如何选择.使用机器学习来解决实际问题,以及调试(比如:误差分析.销蚀分析).调优(比如:模型选择.特征选择)的各种方法和要注意的事项(比如,避免过早优