SSE2 Intrinsics各函数介绍

SIMD相关头文件包括:

//#include <ivec.h>//MMX
//#include <fvec.h>//SSE(also include ivec.h)
//#include <dvec.h>//SSE2(also include fvec.h)

#include <mmintrin.h> //MMX
#include <xmmintrin.h> //SSE(include mmintrin.h)
#include <emmintrin.h> //SSE2(include xmmintrin.h)
#include <pmmintrin.h> //SSE3(include emmintrin.h)
#include <tmmintrin.h>//SSSE3(include pmmintrin.h)
#include <smmintrin.h>//SSE4.1(include tmmintrin.h)
#include <nmmintrin.h>//SSE4.2(include smmintrin.h)
#include <wmmintrin.h>//AES(include nmmintrin.h)
#include <immintrin.h>//AVX(include wmmintrin.h)
#include <intrin.h>//(include immintrin.h)

mmintrin.h为MMX 头文件,其中__m64的定义为:

typedef union __declspec(intrin_type) _CRT_ALIGN(8) __m64
{
    unsigned __int64    m64_u64;
    float               m64_f32[2];
    __int8              m64_i8[8];
    __int16             m64_i16[4];
    __int32             m64_i32[2];
    __int64             m64_i64;
    unsigned __int8     m64_u8[8];
    unsigned __int16    m64_u16[4];
    unsigned __int32    m64_u32[2];
} __m64;

xmmintrin.h为SSE 头文件,此头文件里包含MMX头文件,其中__m128的定义为:

typedef union __declspec(intrin_type) _CRT_ALIGN(16) __m128 {
     float               m128_f32[4];
     unsigned __int64    m128_u64[2];
     __int8              m128_i8[16];
     __int16             m128_i16[8];
     __int32             m128_i32[4];
     __int64             m128_i64[2];
     unsigned __int8     m128_u8[16];
     unsigned __int16    m128_u16[8];
     unsigned __int32    m128_u32[4];
 } __m128;

emmintrin.h为SSE2头文件,此头文件里包含SSE头文件,其中__m128i和__m128d的定义为:

typedef union __declspec(intrin_type) _CRT_ALIGN(16) __m128i {
    __int8              m128i_i8[16];
    __int16             m128i_i16[8];
    __int32             m128i_i32[4];
    __int64             m128i_i64[2];
    unsigned __int8     m128i_u8[16];
    unsigned __int16    m128i_u16[8];
    unsigned __int32    m128i_u32[4];
    unsigned __int64    m128i_u64[2];
} __m128i;

typedef struct __declspec(intrin_type) _CRT_ALIGN(16) __m128d {
    double              m128d_f64[2];
} __m128d;

emmintrin.h文件中各函数的介绍:

	/*----Floating-Point Intrinsics Using Streaming SIMD Extension 2 Instructions----*/
	//Arithmetic Operations(Floating Point):add、sub、mul、div、sqrt、min、max
	//返回一个__m128d的寄存器,r0=_A0+_B0, r1=_A1
	extern __m128d _mm_add_sd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=_A0+_B0, r1=_A1+_B1
	extern __m128d _mm_add_pd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=_A0-_B0, r1=_A1
	extern __m128d _mm_sub_sd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=_A0-_B0, r1=_A1-_B1
	extern __m128d _mm_sub_pd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=_A0*_B0, r1=_A1
	extern __m128d _mm_mul_sd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=_A0*_B0, r1=_A1*_B1
	extern __m128d _mm_mul_pd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=sqrt(_B0), r1=_A1
	extern __m128d _mm_sqrt_sd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=sqrt(_A0), r1=sqrt(_A1)
	extern __m128d _mm_sqrt_pd(__m128d _A);
	//返回一个__m128d的寄存器,r0=_A0/_B0, r1=_A1
	extern __m128d _mm_div_sd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=_A0/_B0, r1=_A1/_B1
	extern __m128d _mm_div_pd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=min(_A0,_B0), r1=_A1
	extern __m128d _mm_min_sd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=min(_A0,_B0), r1=min(_A1,_B1)
	extern __m128d _mm_min_pd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=max(_A0,_B0), r1=_A1
	extern __m128d _mm_max_sd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=max(_A0,_B0), r1=max(_A1,_B1)
	extern __m128d _mm_max_pd(__m128d _A, __m128d _B);

	//Logical Operations(Floating Point SSE2 Intrinsics):and、or、xor、 andnot
	//返回一个__m128d的寄存器,r0=_A0 & _B0, r1=_A1 & _B1
	extern __m128d _mm_and_pd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=(~_A0) & _B0, r1=(~_A1) & _B1
	extern __m128d _mm_andnot_pd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=_A0 | _B0, r1=_A1 | _B1
	extern __m128d _mm_or_pd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=_A0 ^ _B0, r1=_A1 ^ _B1
	extern __m128d _mm_xor_pd(__m128d _A, __m128d _B);

	//Comparisions:==、<、<=、>、>=、!=
	//返回一个__m128d的寄存器,r0=(_A0 == _B0) ? 0xffffffffffffffff : 0x0, r1=_A1
	extern __m128d _mm_cmpeq_sd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=(_A0 == _B0) ? 0xffffffffffffffff : 0x0,
	//r1=(_A1 == _B1) ? 0xffffffffffffffff : 0x0
	extern __m128d _mm_cmpeq_pd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=(_A0 < _B0) ? 0xffffffffffffffff : 0x0, r1=_A1
	extern __m128d _mm_cmplt_sd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=(_A0 < _B0) ? 0xffffffffffffffff : 0x0,
	//r1=(_A1 < _B1) ? 0xffffffffffffffff : 0x0
	extern __m128d _mm_cmplt_pd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=(_A0 <= _B0) ? 0xffffffffffffffff : 0x0, r1=_A1
	extern __m128d _mm_cmple_sd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=(_A0 <= _B0) ? 0xffffffffffffffff : 0x0,
	//r1=(_A1 <= _B1) ? 0xffffffffffffffff : 0x0
	extern __m128d _mm_cmple_pd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=(_A0 > _B0) ? 0xffffffffffffffff : 0x0, r1=_A1
	extern __m128d _mm_cmpgt_sd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=(_A0 > _B0) ? 0xffffffffffffffff : 0x0,
	//r1=(_A1 > _B1) ? 0xffffffffffffffff : 0x0
	extern __m128d _mm_cmpgt_pd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=(_A0 >= _B0) ? 0xffffffffffffffff : 0x0, r1=_A1
	extern __m128d _mm_cmpge_sd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=(_A0 >= _B0) ? 0xffffffffffffffff : 0x0,
	//r1=(_A1 >= _B1) ? 0xffffffffffffffff : 0x0
	extern __m128d _mm_cmpge_pd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=(_A0 != _B0) ? 0xffffffffffffffff : 0x0, r1=_A1
	extern __m128d _mm_cmpneq_sd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=(_A0 != _B0) ? 0xffffffffffffffff : 0x0,
	//r1=(_A1 != _B1) ? 0xffffffffffffffff : 0x0
	extern __m128d _mm_cmpneq_pd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=!(_A0 < _B0) ? 0xffffffffffffffff : 0x0, r1=_A1
	extern __m128d _mm_cmpnlt_sd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=!(_A0 < _B0) ? 0xffffffffffffffff : 0x0,
	//r1=!(_A1 < _B1) ? 0xffffffffffffffff : 0x0
	extern __m128d _mm_cmpnlt_pd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=!(_A0 <= _B0) ? 0xffffffffffffffff : 0x0, r1=_A1
	extern __m128d _mm_cmpnle_sd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=!(_A0 <= _B0) ? 0xffffffffffffffff : 0x0,
	//r1=!(_A1 <= _B1) ? 0xffffffffffffffff : 0x0
	extern __m128d _mm_cmpnle_pd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=!(_A0 > _B0) ? 0xffffffffffffffff : 0x0, r1=_A1
	extern __m128d _mm_cmpngt_sd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=!(_A0 > _B0) ? 0xffffffffffffffff : 0x0,
	//r1=!(_A1 > _B1) ? 0xffffffffffffffff : 0x0
	extern __m128d _mm_cmpngt_pd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=!(_A0 >= _B0) ? 0xffffffffffffffff : 0x0, r1=_A1
	extern __m128d _mm_cmpnge_sd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=!(_A0 >= _B0) ? 0xffffffffffffffff : 0x0,
	//r1=!(_A1 >= _B1) ? 0xffffffffffffffff : 0x0
	extern __m128d _mm_cmpnge_pd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=(_A0 ord _B0) ? 0xffffffffffffffff : 0x0,
	//r1=(_A1 ord _B1) ? 0xffffffffffffffff : 0x0
	extern __m128d _mm_cmpord_pd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=(_A0 ord _B0) ? 0xffffffffffffffff : 0x0, r1=_A1
	extern __m128d _mm_cmpord_sd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=(_A0 unord _B0) ? 0xffffffffffffffff : 0x0,
	//r1=(_A1 unord _B1) ? 0xffffffffffffffff : 0x0
	extern __m128d _mm_cmpunord_pd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=(_A0 unord _B0) ? 0xffffffffffffffff : 0x0, r1=_A1
	extern __m128d _mm_cmpunord_sd(__m128d _A, __m128d _B);
	//返回一个0或1的整数,r=(_A0 != _B0) ? 0x1 : 0x0, If _A and _B is a NaN, 1 is returned
	extern int _mm_comieq_sd(__m128d _A, __m128d _B);
	//返回一个0或1的整数,r=(_A0 < _B0) ? 0x1 : 0x0, If _A and _B is a NaN, 1 is returned
	extern int _mm_comilt_sd(__m128d _A, __m128d _B);
	//返回一个0或1的整数,r=(_A0 <= _B0) ? 0x1 : 0x0, If _A and _B is a NaN, 1 is returned
	extern int _mm_comile_sd(__m128d _A, __m128d _B);
	//返回一个0或1的整数,r=(_A0 > _B0) ? 0x1 : 0x0, If _A and _B is a NaN, 0 is returned
	extern int _mm_comigt_sd(__m128d _A, __m128d _B);
	//返回一个0或1的整数,r=(_A0 >= _B0) ? 0x1 : 0x0, If _A and _B is a NaN, 0 is returned
	extern int _mm_comige_sd(__m128d _A, __m128d _B);
	//返回一个0或1的整数,r=(_A0 != _B0) ? 0x1 : 0x0, If _A and _B is a NaN, 0 is returned
	extern int _mm_comineq_sd(__m128d _A, __m128d _B);
	//返回一个0或1的整数,r=(_A0 == _B0) ? 0x1 : 0x0, If _A and _B is a NaN, 1 is returned
	extern int _mm_ucomieq_sd(__m128d _A, __m128d _B);
	//返回一个0或1的整数,r=(_A0 < _B0) ? 0x1 : 0x0, If _A and _B is a NaN, 1 is returned
	extern int _mm_ucomilt_sd(__m128d _A, __m128d _B);
	//返回一个0或1的整数,r=(_A0 <= _B0) ? 0x1 : 0x0, If _A and _B is a NaN, 1 is returned
	extern int _mm_ucomile_sd(__m128d _A, __m128d _B);
	//返回一个0或1的整数,r=(_A0 > _B0) ? 0x1 : 0x0, If _A and _B is a NaN, 0 is returned
	extern int _mm_ucomigt_sd(__m128d _A, __m128d _B);
	//返回一个0或1的整数,r=(_A0 >= _B0) ? 0x1 : 0x0, If _A and _B is a NaN, 0 is returned
	extern int _mm_ucomige_sd(__m128d _A, __m128d _B);
	//返回一个0或1的整数,r=(_A0 != _B0) ? 0x1 : 0x0, If _A and _B is a NaN, 0 is returned
	extern int _mm_ucomineq_sd(__m128d _A, __m128d _B);

	//Conversion Operations
	//返回一个__m128d的寄存器,r0=(dobule)_A0, r1=(double)_A1
	extern __m128d _mm_cvtepi32_pd(__m128i _A);
	//返回一个__m128i的寄存器,r0=(int)_A0, r1=(int)_A1, r2=0x0, r3=0x0
	extern __m128i _mm_cvtpd_epi32(__m128d _A);
	//返回一个__m128i的寄存器,r0=(int)_A0, r1=(int)_A1, r2=0x0, r3=0x0,using truncate
	extern __m128i _mm_cvttpd_epi32(__m128d _A);
	//返回一个__m128的寄存器,r0=(flaot)_A0, r1=(float)_A1, r2=(float)_A2, r3=(float)_A3
	extern __m128 _mm_cvtepi32_ps(__m128i _A);
	//返回一个__m128i的寄存器,r0=(int)_A0, r1=(int)_A1, r2=(int)_A2, r3=(int)_A3
	extern __m128i _mm_cvtps_epi32(__m128 _A);
	//返回一个__m128i的寄存器,r0=(int)_A0, r1=(int)_A1, r2=(int)_A2, r3=(int)_A3,using truncate
	extern __m128i _mm_cvttps_epi32(__m128 _A);
	//返回一个__m128的寄存器,r0=(flaot)_A0, r1=(float)_A1, r2=0.0, r3=0.0
	extern __m128 _mm_cvtpd_ps(__m128d _A);
	//返回一个__m128d的寄存器,r0=(dobule)_A0, r1=(double)_A1
	extern __m128d _mm_cvtps_pd(__m128 _A);
	//返回一个__m128的寄存器,r0=(float)_B0, r1=_B1, r2=_B2, r3=_B3
	extern __m128 _mm_cvtsd_ss(__m128 _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=(double)_B0, r1=_A1
	extern __m128d _mm_cvtss_sd(__m128d _A, __m128 _B);
	//返回一个32bit整数,r=(int)_A0
	extern int _mm_cvtsd_si32(__m128d _A);
	//返回一个32bit整数,r=(int)_A0,using truncate
	extern int _mm_cvttsd_si32(__m128d _A);
	//返回一个__m128d的寄存器,r0=(double)_B, r1=_A1
	extern __m128d _mm_cvtsi32_sd(__m128d _A, int _B);
	//返回一个__m64的寄存器,r0=(int)_A0, r1=(int)_A1
	extern __m64 _mm_cvtpd_pi32(__m128d _A);
	//返回一个__m64的寄存器,r0=(int)_A0, r1=(int)_A1,using truncate
	extern __m64 _mm_cvttpd_pi32(__m128d _A);
	//返回一个__m128d的寄存器,r0=(dobule)_A0, r1=(double)_A1
	extern __m128d _mm_cvtpi32_pd(__m64 _A);

	//Miscellaneous Operations(Floating-Point SSE2 Intrinsics)
	//返回一个__m128d的寄存器,r0=_A1, r1=_B1
	extern __m128d _mm_unpackhi_pd(__m128d _A, __m128d _B);
	//返回一个__m128d的寄存器,r0=_A0, r1=_B0
	extern __m128d _mm_unpacklo_pd(__m128d _A, __m128d _B);
	//返回一个2bit整数,r=sign(_A1) << 1 | sign(_A0)
	extern int _mm_movemask_pd(__m128d _A);
	//返回一个__m128d的寄存器,Selects two specific double-precision,
	// floating-point values from _A and _B, based on the mask _I,
	//The mask must be an immediate
	extern __m128d _mm_shuffle_pd(__m128d _A, __m128d _B, int _I);

	//Load Operations(Floating-Point SSE2 Intrinsics)
	//返回一个__m128d的寄存器,r0=_Dp[0], r1=_Dp[1], The address _Dp must be 16-byte aligned
	extern __m128d _mm_load_pd(double const*_Dp);
	//返回一个__m128d的寄存器,r0=*_Dp, r1=*_Dp, The address _Dp does not need
	//to be 16-byte aligned
	extern __m128d _mm_load1_pd(double const*_Dp);
	//返回一个__m128d的寄存器,r0=_Dp[1], r1=_Dp[0], The address _Dp must be 16-byte aligned
	extern __m128d _mm_loadr_pd(double const*_Dp);
	//返回一个__m128d的寄存器,r0=_Dp[0], r1=_Dp[1], The address _Dp does not
	//need to be 16-byte aligned
	extern __m128d _mm_loadu_pd(double const*_Dp);
	//返回一个__m128d的寄存器,r0=*_Dp, r1=0.0, The address _Dp does not
	//need to be 16-byte aligned
	extern __m128d _mm_load_sd(double const*_Dp);
	//返回一个__m128d的寄存器,r0=_A0, r1=*_Dp, The address _Dp does not
	//need to be 16-byte aligned
	extern __m128d _mm_loadh_pd(__m128d _A, double const*_Dp);
	//返回一个__m128d的寄存器,r0=*_Dp, r1=_A1, The address _Dp does not
	//need to be 16-byte aligned
	extern __m128d _mm_loadl_pd(__m128d _A, double const*_Dp);

	//Set Operations(Floating-Point SSE2 Intrinsics)
	//返回一个__m128d的寄存器,r0=_W, r1=0.0
	extern __m128d _mm_set_sd(double _W);
	//返回一个__m128d的寄存器,r0=_A, r1=_A
	extern __m128d _mm_set1_pd(double _A);
	//返回一个__m128d的寄存器,r0=_Y, r1=_Z
	extern __m128d _mm_set_pd(double _Z, double _Y);
	//返回一个__m128d的寄存器,r0=_Y, r1=_Z
	extern __m128d _mm_setr_pd(double _Y, double _Z);
	//返回一个__m128d的寄存器,r0=0.0, r1=0.0
	extern __m128d _mm_setzero_pd(void);
	//返回一个__m128d的寄存器,r0=_B0, r1=_A1
	extern __m128d _mm_move_sd(__m128d _A, __m128d _B);

	//Store Operations(Floating-Point SSE2 Intrinsics)
	//返回为空,*_Dp=_A0, The address _Dp does not need to be 16-byte aligned
	extern void _mm_store_sd(double *_Dp, __m128d _A);
	//返回为空,_Dp[0]=_A0, _Dp[1]=_A0, The address _Dp must be 16-byte aligned
	extern void _mm_store1_pd(double *_Dp, __m128d _A);
	//返回为空,_Dp[0]=_A0, _Dp[1]=_A1, The address _Dp must be 16-byte aligned
	extern void _mm_store_pd(double *_Dp, __m128d _A);
	//返回为空,_Dp[0]=_A0, _Dp[1]=_A1, The address _Dp does not need to be 16-byte aligned
	extern void _mm_storeu_pd(double *_Dp, __m128d _A);
	//返回为空,_Dp[0]=_A1, _Dp[1]=_A0, The address _Dp must be 16-byte aligned
	extern void _mm_storer_pd(double *_Dp, __m128d _A);
	//返回为空,*_Dp=_A1
	extern void _mm_storeh_pd(double *_Dp, __m128d _A);
	//返回为空,*_Dp=_A0
	extern void _mm_storel_pd(double *_Dp, __m128d _A);

	//new convert to float
	//返回一个64bit double类型,r=_A0, Extracts the lower order floating point value
	extern double _mm_cvtsd_f64(__m128d _A);

	//Cache Support for Streaming SIMD Extensions 2 Floating-Point Operations
	//返回为空,_Dp[0]=_A0, _Dp[1]=_A1, Stores the data in _A to the address _Dp without
	//polluting caches. The address _Dp must be 16-byte aligned. If the cache line
	//containing address _Dp is already in the cache, the cache will be updated
	extern void _mm_stream_pd(double *_Dp, __m128d _A);

	/*------------Integer Intrinsics Using Streaming SIMD Extensions 2-------------*/
	//Arithmetic Operations(Integer SSE2 Intrinsics):add、sub、mul、avg、min、max
	//返回一个__m128i的寄存器,r0=_A0+_B0, r1=_A1+_B1, ... r15=_A15+_B15
	extern __m128i _mm_add_epi8(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,将_A和_B中对应位置的16bit有符号或无符号整数分别相加,
	//即ri=_Ai+_Bi(r0=_A0+_B0, r1=_A1+_B1, ... r7=_A7+_B7)
	extern __m128i _mm_add_epi16(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,r0=_A0+_B0, r1=_A1+_B1, r2=_A2+_B2, r3=_A3+_B3
	extern __m128i _mm_add_epi32(__m128i _A, __m128i _B);
	//返回一个__m64的寄存器,r=_A+_B
	extern __m64 _mm_add_si64(__m64 _A, __m64 _B);
	//返回一个__m128i的寄存器,r0=_A0+_B0, r1=_A1+_B1
	extern __m128i _mm_add_epi64(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,r0=SignedSaturate(_A0+_B0), r1=SignedSaturate(_A1+_B1), ...
	//r15=SignedSaturate(_A15+_B15), saturates
	extern __m128i _mm_adds_epi8(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,将_A和_B中对应位置的16bit有符号或无符号整数分别相加,
	//r0=SignedSaturate(_A0+_B0), r1=SignedSaturate(_A1+_B1), ...
	//r7=SignedSaturate(_A7+_B7), 当计算结果溢出时将其置为边界值(saturates)
	extern __m128i _mm_adds_epi16(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,r0=UnsignedSaturate(_A0+_B0), r1=UnsignedSaturate(_A1+_B1), ...
	//r15=UnsignedSaturate(_A15+_B15), saturates
	extern __m128i _mm_adds_epu8(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,r0=UnsignedSaturate(_A0+_B0), r1=UnsignedSaturate(_A1+_B1), ...
	//r7=UnsignedSaturate(_A7+_B7), saturates
	extern __m128i _mm_adds_epu16(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,r0=(_A0+_B0)/2, r1=(_A1+_B1)/2, ... r15=(_A15+_B15)/2, rounds
	extern __m128i _mm_avg_epu8(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,将_A和_B中对应位置的16bit无符号整数取平均,
	//即ri=(_Ai+_Bi)/2(r0=(_A0+_B0)/2, r1=(_A1+_B1)/2, ... r7=(_A7+_B7)/2), rounds
	extern __m128i _mm_avg_epu16(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,它含有4个有符号或无符号32bit的整数,
	//分别满足:r0=(_A0*_B0)+(_A1*_B1), r1=(_A2*_B2)+(_A3*_B3),
	//r2=(_A4*_B4)+(_A5*_B5), r3=(_A6*_B6)+(_A7*_B7)
	extern __m128i _mm_madd_epi16(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,取_A和_B中对应位置的16bit有符号或无符号整数的最大值,
	//即ri=max(_Ai,_Bi) (r0=max(_A0,_B1), r1=max(_A1,_B1), ... r7=max(_A7,_B7))
	extern __m128i _mm_max_epi16(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,r0=max(_A0,_B1), r1=max(_A1,_B1), ... r15=max(_A15,_B15)
	extern __m128i _mm_max_epu8(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,取_A和_B中对应位置的16bit有符号或无符号整数的最小值,
	//即ri=min(_Ai, _Bi)(r0=min(_A0,_B1), r1=min(_A1,_B1), ... r7=min(_A7,_B7))
	extern __m128i _mm_min_epi16(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,r0=min(_A0,_B1), r1=min(_A1,_B1), ... r15=min(_A15,_B15)
	extern __m128i _mm_min_epu8(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,它含8个有符号或无符号16bit的整数,分别为_A和_B对应位置的16bit
	//有符号或无符号整数相乘结果的高16bit数据,即ri=(_Ai*_Bi)[31:16](r0=(_A0*_B0)[31:16],
	//r1=(_A1*_B1)[31:16] ... r7=(_A7*_B7)[31:16])
	extern __m128i _mm_mulhi_epi16(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,r0=(_A0*_B0)[31:16], r1=(_A1*_B1)[31:16] ... r7=(_A7*_B7)[31:16]
	extern __m128i _mm_mulhi_epu16(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,它含8个有符号或无符号16bit的整数,分别为_A和_B对应位置的16bit
	//有符号或无符号整数相乘结果的低16bit数据,即ri=(_Ai*_Bi)[15:0](r0=(_A0*_B0)[15:0],
	//r1=(_A1*_B1)[15:0] ... r7=(_A7*_B7)[15:0])
	extern __m128i _mm_mullo_epi16(__m128i _A, __m128i _B);
	//返回一个__m64的寄存器,r=_A0*_B0
	extern __m64 _mm_mul_su32(__m64 _A, __m64 _B);
	//返回一个__m128i的寄存器,r0=_A0*_B0, r1=_A2*_B2
	extern __m128i _mm_mul_epu32(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,r0=abs(_A0-_B0) + abs(_A1-_B1) + ... + abs(_A7-_B7),
	//r1=0x0,r2=0x0, r3=0x0, r4=abs(_A8-_B8) + abs(_A9-_B9) + ... + abs(_A15-_B15),
	//r5=0x0, r6=0x0, r7=0x0
	extern __m128i _mm_sad_epu8(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,r0=_A0-_B0, r1=_A1-_B1, ... r15=_A15-_B15
	extern __m128i _mm_sub_epi8(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,将_A和_B中对应位置的16bit有符号或无符号整数分别相减,
	//即ri=_Ai-_Bi(r0=_A0-_B0, r1=_A1-_B1, ... r7=_A7-_B7)
	extern __m128i _mm_sub_epi16(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,r0=_A0-_B0, r1=_A1-_B1, r2=_A2-_B2, r3=_A3-_B3
	extern __m128i _mm_sub_epi32(__m128i _A, __m128i _B);
	//返回一个__m64的寄存器,r=_A-_B
	extern __m64 _mm_sub_si64(__m64 _A, __m64 _B);
	//返回一个__m128i的寄存器,r0=_A0-_B0, r1=_A1-_B1
	extern __m128i _mm_sub_epi64(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,r0=SignedSaturate(_A0-_B0), r1=SignedSaturate(_A1-_B1), ...
	//r15=SignedSaturate(_A15-_B15), saturate
	extern __m128i _mm_subs_epi8(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,将_A和_B中对应位置的16bit有符号或无符号整数分别相减,
	//当计算结果溢出时将其置为边界值(saturate), r0=SignedSaturate(_A0-_B0),
	//r1=SignedSaturate(_A1-_B1), ... r7=SignedSaturate(_A7-_B7)
	extern __m128i _mm_subs_epi16(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,r0=UnsignedSaturate(_A0-_B0), r1=UnsignedSaturate(_A1-_B1), ...
	//r15=UnsignedSaturate(_A15-_B15), saturate
	extern __m128i _mm_subs_epu8(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,r0=UnsignedSaturate(_A0-_B0), r1=UnsignedSaturate(_A1-_B1), ...
	//r15=UnsignedSaturate(_A7-_B7), saturate
	extern __m128i _mm_subs_epu16(__m128i _A, __m128i _B);

	//Logical Operations(Integer SSE2 Intrinsics):and、or、xor、andnot
	//返回一个__m128i的寄存器,将寄存器_A和寄存器_B的对应位进行按位与运算, r=_A & _B
	extern __m128i _mm_and_si128(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,将寄存器_A每一位取非,然后和寄存器_B的每一位进行按位与运算,
	//r=(~_A) & _B
	extern __m128i _mm_andnot_si128(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,将寄存器_A和寄存器_B的对应位进行按位或运算, r=_A | _B
	extern __m128i _mm_or_si128(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,将寄存器_A和寄存器_B的对应位进行按位异或运算, r=_A ^ _B
	extern __m128i _mm_xor_si128(__m128i _A, __m128i _B);

	//Shift Operations
	//返回一个__m128i的寄存器,r=_A << (_Imm * 8),  _Imm must be an immediate,
	//shifting in zeros
	extern __m128i _mm_slli_si128(__m128i _A, int _Imm);
	//返回一个__m128i的寄存器,将寄存器_A中的8个16bit整数按照_Count进行相同的逻辑左移,
	//r0=_A0 << _Count, r1=_A1 << _Count, ... r7=_A7 << count,  shifting in zeros
	extern __m128i _mm_slli_epi16(__m128i _A, int _Count);
	//返回一个__m128i的寄存器,将寄存器_A中的8个16bit整数按照_Count寄存器中对应位置的整数
	//进行逻辑左移, r0=_A0 << _Count, r1=_A1 << _Count, ... r7=_A7 << count,  shifting in zeros
	extern __m128i _mm_sll_epi16(__m128i _A, __m128i _Count);
	//返回一个__m128i的寄存器,r0=_A0 << _Count, r1=_A1 << _Count, r2=_A2 << count,
	//r3=_A3 << count,  shifting in zeros
	extern __m128i _mm_slli_epi32(__m128i _A, int _Count);
	//返回一个__m128i的寄存器,r0=_A0 << _Count, r1=_A1 << _Count, r2=_A2 << count,
	//r3=_A3 << count,  shifting in zeros
	extern __m128i _mm_sll_epi32(__m128i _A, __m128i _Count);
	//返回一个__m128i的寄存器,r0=_A0 << _Count, r1=_A1 << _Count,  shifting in zeros
	extern __m128i _mm_slli_epi64(__m128i _A, int _Count);
	//返回一个__m128i的寄存器,r0=_A0 << _Count, r1=_A1 << _Count,  shifting in zeros
	extern __m128i _mm_sll_epi64(__m128i _A, __m128i _Count);
	//返回一个__m128i的寄存器,将寄存器_A中的8个16bit整数按照_Count进行相同的算术右移,
	//r0=_A0 >> _Count, r1=_A1 >> _Count, ... r7=_A7 >> count,  shifting in the sign bit
	extern __m128i _mm_srai_epi16(__m128i _A, int _Count);
	//返回一个__m128i的寄存器,将寄存器_A中的8个16bit整数按照_Count寄存器中对应位置的整数进行
	//算术右移,r0=_A0 >> _Count, r1=_A1 >> _Count, ... r7=_A7 >> count,  shifting in the sign bit
	extern __m128i _mm_sra_epi16(__m128i _A, __m128i _Count);
	//返回一个__m128i的寄存器,r0=_A0 >> _Count, r1=_A1 >> _Count, r3=_A3 >> count,
	//r4=_A4 >> count,  shifting in the sign bit
	extern __m128i _mm_srai_epi32(__m128i _A, int _Count);
	//返回一个__m128i的寄存器,r0=_A0 >> _Count, r1=_A1 >> _Count, r3=_A3 >> count,
	//r4=_A4 >> count,  shifting in the sign bit
	extern __m128i _mm_sra_epi32(__m128i _A, __m128i _Count);
	//返回一个__m128i的寄存器,r=srl(_A, _Imm * 8),   _Imm must be an immediate,
	//shifting in zeros
	extern __m128i _mm_srli_si128(__m128i _A, int _Imm);
	//返回一个__m128i的寄存器,将寄存器_A中的8个16bit整数按照_Count进行相同的逻辑右移,
	//移位填充值为0,r0=srl(_A0, _Count), r1=srl(_A1, _Count), ... r7=srl(_A7, _Count),
	//shifting in zeros
	extern __m128i _mm_srli_epi16(__m128i _A, int _Count);
	//返回一个__m128i的寄存器,将寄存器_A中的8个16bit整数按照_Count寄存器中对应位置的整数
	//进行逻辑右移,移位填充值为0, r0=srl(_A0, _Count), r1=srl(_A1, _Count), ...
	//r7=srl(_A7, _Count),  shifting in zeros
	extern __m128i _mm_srl_epi16(__m128i _A, __m128i _Count);
	//返回一个__m128i的寄存器,r0=srl(_A0, _Count), r1=srl(_A1, _Count), r2=srl(_A2, _Count),
	//r3=srl(_A3, _Count),  shifting in zeros
	extern __m128i _mm_srli_epi32(__m128i _A, int _Count);
	//返回一个__m128i的寄存器,r0=srl(_A0, _Count), r1=srl(_A1, _Count), r2=srl(_A2, _Count),
	//r3=srl(_A3, _Count),  shifting in zeros
	extern __m128i _mm_srl_epi32(__m128i _A, __m128i _Count);
	//返回一个__m128i的寄存器,r0=srl(_A0, _Count), r1=srl(_A1, _Count), shifting in zeros
	extern __m128i _mm_srli_epi64(__m128i _A, int _Count);
	//返回一个__m128i的寄存器,r0=srl(_A0, _Count), r1=srl(_A1, _Count), shifting in zeros
	extern __m128i _mm_srl_epi64(__m128i _A, __m128i _Count);

	//Comparison Intrinsics(SSE2):==、>、<
	//返回一个__m128i的寄存器,r0=(_A0 == _B0) ? 0xff : 0x00,
	//r1=(_A1 == _B1) ? 0xff : 0x0, ... r15=(_A15 == _B15) ? 0xff : 0x0
	extern __m128i _mm_cmpeq_epi8(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,分别比较寄存器_A和寄存器_B对应位置16bit整数是否相等,若相等,
	//该位置返回0xffff,否则返回0x0,即ri=(_Ai==_Bi)?0xffff:0x0(r0=(_A0 == _B0) ? 0xffff : 0x00,
	//r1=(_A1 == _B1) ? 0xffff : 0x0, ... r7=(_A7 == _B7) ? 0xffff : 0x0)
	extern __m128i _mm_cmpeq_epi16(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,r0=(_A0 == _B0) ? 0xffffffff : 0x00,
	//r1=(_A1 == _B1) ? 0xffffffff : 0x0,
	//r2=(_A2 == _B2) ? 0xffffffff : 0x0, r3=(_A3 == _B3) ? 0xffffffff : 0x0
	extern __m128i _mm_cmpeq_epi32(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,r0=(_A0 > _B0) ? 0xff : 0x00, r1=(_A1 > _B1) ? 0xff : 0x0, ...
	//r15=(_A15 > _B15) ? 0xff : 0x0
	extern __m128i _mm_cmpgt_epi8(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,分别比较寄存器_A的每个16bit整数是否大于寄存器_B对应位置16bit的整数,
	//若大于,该位置返回0xffff,否则返回0x0,
	//即ri=(_Ai>_Bi)?0xffff:0x0(r0=(_A0 > _B0) ? 0xffff : 0x00,
	//r1=(_A1 > _B1) ? 0xffff : 0x0, ... r7=(_A7 > _B7) ? 0xffff : 0x0)
	extern __m128i _mm_cmpgt_epi16(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,r0=(_A0 > _B0) ? 0xffffffff : 0x00,
	//r1=(_A1 > _B1) ? 0xffffffff : 0x0,
	//r2=(_A2 > _B2) ? 0xffffffff : 0x0, r3=(_A3 > _B3) ? 0xffffffff : 0x0
	extern __m128i _mm_cmpgt_epi32(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,r0=(_A0 < _B0) ? 0xff : 0x00, r1=(_A1 < _B1) ? 0xff : 0x0, ...
	//r15=(_A15 < _B15) ? 0xff : 0x0
	extern __m128i _mm_cmplt_epi8(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,分别比较寄存器_A的每个16bit整数是否小于寄存器_B对应位置16bit整数,
	//若小于,该位置返回0xffff,否则返回0x0,
	//即ri=(_Ai<_Bi)?0xffff:0x0(r0=(_A0 < _B0) ? 0xffff : 0x00,
	//r1=(_A1 < _B1) ? 0xffff : 0x0, ... r7=(_A7 < _B7) ? 0xffff : 0x0)
	extern __m128i _mm_cmplt_epi16(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,r0=(_A0 < _B0) ? 0xffffffff : 0x00,
	//r1=(_A1 < _B1) ? 0xffffffff : 0x0,
	//r2=(_A2 < _B2) ? 0xffffffff : 0x0, r3=(_A3 < _B3) ? 0xffffffff : 0x0
	extern __m128i _mm_cmplt_epi32(__m128i _A, __m128i _B);

	//Conversion Intrinsics: int <-----> __m128i
	//返回一个__m128i的寄存器,r0=_A, r1=0x0, r2=0x0, r3=0x0
	extern __m128i _mm_cvtsi32_si128(int _A);
	//返回一个32bit整数,r=_A0
	extern int _mm_cvtsi128_si32(__m128i _A);

	//Miscellaneous Operations(Integer SSE2 Intrinsics)
	//返回一个__m128i的寄存器,r0=SignedSaturate(_A0), r1=SignedSaturate(_A1), ...
	//r7=SignedSaturate(_A7), r8=SignedSaturate(_B0), r9=SignedSaturate(_B1), ...
	//r15=SignedSaturate(_B7),  saturate
	extern __m128i _mm_packs_epi16(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,r0=SignedSaturate(_A0), r1=SignedSaturate(_A1),
	//r2=SignedSaturate(_A2),r3=SignedSaturate(_A3), r4=SignedSaturate(_B0),
	//r5=SignedSaturate(_B1), r6=SignedSaturate(_B2), r7=SignedSaturate(_B3),  saturate
	extern __m128i _mm_packs_epi32(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,r0=UnsignedSaturate(_A0), r1=UnsignedSaturate(_A1), ...
	//r7=UnsignedSaturate(_A7),r8=UnsignedSaturate(_B0), r9=UnsignedSaturate(_B1), ...
	//r15=UnsignedSaturate(_B7),  saturate
	extern __m128i _mm_packus_epi16(__m128i _A, __m128i _B);
	//返回一个16bit整数,根据_Imm从_A中8个16bit数中选取对应编号的数,
	//r=(_Imm == 0) ? _A0 : ((_Imm == 1) ? _A1 : ... (_Imm == 7) ? _A7),
	//_Imm must be an immediate, zero extends
	extern int _mm_extract_epi16(__m128i _A, int _Imm);
	//返回一个__m128i的寄存器,根据_Imm将_A中8个16bit数中对应编号的数替换为_B,
	//r0=(_Imm == 0) ? _B : _A0; r1=(_Imm == 1) : _B : _A1, ... r7=(_Imm == 7) ? _B : _A7
	extern __m128i _mm_insert_epi16(__m128i _A, int _B, int _Imm);
	//返回一个16bit整数,r=(_A15[7] << 15) | (_A14[7] << 14) ... (_A1[7] << 1) | _A0[7],
	//zero extends the upper bits
	extern int _mm_movemask_epi8(__m128i _A);
	//返回一个__m128i的寄存器,它是将_A中128bit数据以32bit为单位重新排列得到的,_Imm为有
	//一个四元组,表示重新排列的顺序。当_A中原本存储的整数为16bit时,这条指令将其两两一组
	//进行排列。例如,_A=(_A0,_A1,_A2,_A3,_A4,_A5,_A6,_A7), _Imm=(2,3,0,1),其中_Ai为16bit整数,
	//_A0为低位,返回结果为(_A2,_A3,_A0,_A1,_A6,_A7,_A4,_A5),  _Imm must be an immediate
	extern __m128i _mm_shuffle_epi32(__m128i _A, int _Imm);
	//返回一个__m128i的寄存器,它是将_A中高64bit数据以16bit为单位重新排列得到的,_Imm为一个四元组,
	//表示重新排列的顺序。_A中低64bit数据顺序不变。例如,_A=(_A0,_A1,_A2,_A3,_A4,_A5,_A6,_A7),
	//_Imm=(2,3,0,1),其中_Ai为16bit整数,_A0为低位,返回结果为(_A0,_A1,_A2,_A3,_A5,_A4,_A7,_A6),
	//_Imm must be an immediate
	extern __m128i _mm_shufflehi_epi16(__m128i _A, int _Imm);
	//返回一个__m128i的寄存器,它是将_A中低64bit数据以16bit为单位重新排列得到的,_Imm为一个四元组,
	//表示重新排列的顺序。_A中高64bit数据顺序不变。例如,_A=(_A0,_A1,_A2,_A3,_A4,_A5,_A6,_A7),
	//_Imm=(2,3,0,1),其中_Ai为16bit整数,_A0为低位,返回结果为(_A1,_A0,_A3,_A2,_A5,_A4,_A7,_A6),
	//_Imm must be an immediate
	extern __m128i _mm_shufflelo_epi16(__m128i _A, int _Imm);
	//返回一个__m128i的寄存器,r0=_A8, r1=_B8, r2=_A9, r3=_B9, ... r14=_A15, r15=_B15
	extern __m128i _mm_unpackhi_epi8(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,它将寄存器_A和寄存器_B的高64bit数以16bit为单位交织在一块。
	//例如,_A=(_A0,_A1,_A2,_A3,_A4,_A5,_A6,_A7),_B=(_B0,_B1,_B2,_B3,_B4,_B5,_B6,_B7),
	//其中_Ai,_Bi为16bit整数,_A0,_B0为低位,返回结果为(_A4,_B4,_A5,_B5,_A6,_B6,_A7,_B7),
	//r0=_A4, r1=_B4, r2=_A5, r3=_B5, r4=_A6, r5=_B6, r6=_A7, r7=_B7
	extern __m128i _mm_unpackhi_epi16(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,它将寄存器_A和寄存器_B的高64bit数以32bit为单位交织在一块。
	//例如,_A=(_A0,_A1,_A2,_A3,_A4,_A5,_A6,_A7),_B=(_B0,_B1,_B2,_B3,_B4,_B5,_B6,_B7),
	//其中_Ai,_Bi为16bit整数,_A0,_B0为低位,返回结果为(_A4,_A5,_B4,_B5,_A6,_A7,_B6,_B7),
	//r0=_A2, r1=_B2, r2=_A3, r3=_B3
	extern __m128i _mm_unpackhi_epi32(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,它将寄存器_A和寄存器_B的高64bit数以64bit为单位交织在一块。
	//例如,_A=(_A0,_A1,_A2,_A3,_A4,_A5,_A6,_A7),_B=(_B0,_B1,_B2,_B3,_B4,_B5,_B6,_B7),
	//其中_Ai,_Bi为16bit整数,_A0,_B0为低位,
	//返回结果为(_A4,_A5,_A6,_A7,_B4,_B5,_B6,_B7), r0=_A1, r1=_B1
	extern __m128i _mm_unpackhi_epi64(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,r0=_A0, r1=_B0, r2=_A1, r3=_B1, ... r14=_A7, r15=_B7
	extern __m128i _mm_unpacklo_epi8(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,它将寄存器_A和寄存器_B的低64bit数以16bit为单位交织在一块。
	//例如,_A=(_A0,_A1,_A2,_A3,_A4,_A5,_A6,_A7),_B=(_B0,_B1,_B2,_B3,_B4,_B5,_B6,_B7),
	//其中_Ai,_Bi为16bit整数,_A0,_B0为低位,返回结果为(_A0,_B0,_A1,_B1,_A2,_B2,_A3,_B3),
	//r0=_A0, r1=_B0, r2=_A1, r3=_B1, r4=_A2, r5=_B2, r6=_A3, r7=_B3
	extern __m128i _mm_unpacklo_epi16(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,它将寄存器_A和寄存器_B的低64bit数以32bit为单位交织在一块。
	//例如,_A=(_A0,_A1,_A2,_A3,_A4,_A5,_A6,_A7),_B=(_B0,_B1,_B2,_B3,_B4,_B5,_B6,_B7),
	//其中_Ai,_Bi为16bit整数,_A0,_B0为低位,返回结果为(_A0,_A1,_B0,_B1,_A2,_A3,_B2,_B3),
	//r0=_A0, r1=_B0, r2=_A1, r3=_B1
	extern __m128i _mm_unpacklo_epi32(__m128i _A, __m128i _B);
	//返回一个__m128i的寄存器,它将寄存器_A和寄存器_B的低64bit数以32bit为单位交织在一块。
	//例如,_A=(_A0,_A1,_A2,_A3,_A4,_A5,_A6,_A7),_B=(_B0,_B1,_B2,_B3,_B4,_B5,_B6,_B7),
	//其中_Ai,_Bi为16bit整数,_A0,_B0为低位,返回结果为(_A0,_A1,_A2,_A3,_B0,_B1,_B2,_B3),
	//ro=_A0, r1=_B0
	extern __m128i _mm_unpacklo_epi64(__m128i _A, __m128i _B);

	//Load Operations(Integer SSE2 Intrinsics)
	//返回为一个__m128i的寄存器,它将_P指向的数据读到指定寄存器中,实际使用时,
	//_P一般是通过类型转换得到的, Address _P must be 16-byte aligned
	extern __m128i _mm_load_si128(__m128i const*_P);
	//返回一个__m128i的寄存器,Loads 128-bit value, Address _P does not need be 16-byte aligned
	extern __m128i _mm_loadu_si128(__m128i const*_P);
	//返回一个__m128i的寄存器,r0=*p[63:0], r1=0x0, zeroing the upper 64 bits of the result
	extern __m128i _mm_loadl_epi64(__m128i const*_P);

	//Set Operations(Integer SSE2 Intrinsics)
	//返回一个__m128i的寄存器,r0=_Q0, r1=_Q1
	extern __m128i _mm_set_epi64(__m64 _Q1, __m64 _Q0);
	//返回一个__m128i的寄存器,r0=_I0, r1=_I1, r2=_I2, r3=_I3
	extern __m128i _mm_set_epi32(int _I3, int _I2, int _I1, int _I0);
	//返回一个__m128i的寄存器,使用8个具体的short型数据来设置寄存器存放数据,
	//r0=_W0, r1=_W1, ... r7=_W7
	extern __m128i _mm_set_epi16(short _W7, short _W6, short _W5, short _W4,
									short _W3, short _W2, short _W1, short _W0);
	//返回一个__m128i的寄存器,r0=_B0, r1=_B1, ... r15=_B15
	extern __m128i _mm_set_epi8(char _B15, char _B14, char _B13, char _B12, char _B11,
					char _B10, char _B9,char _B8, char _B7, char _B6, char _B5, char _B4,
					char _B3, char _B2, char _B1, char _B0);
	//返回一个__m128i的寄存器,r0=_Q, r1=_Q
	extern __m128i _mm_set1_epi64(__m64 _Q);
	//返回一个__m128i的寄存器,r0=_I, r1=_I, r2=_I, r3=_I
	extern __m128i _mm_set1_epi32(int _I);
	//返回一个__m128i的寄存器,r0=_W, r1=_W, ... r7=_W
	extern __m128i _mm_set1_epi16(short _W);
	//返回一个__m128i的寄存器,r0=_B, r1=_B, ... r15=_B
	extern __m128i _mm_set1_epi8(char _B);
	//返回一个__m128i的寄存器,r=_Q
	extern __m128i _mm_setl_epi64(__m128i _Q);
	//返回一个__m128i的寄存器,r0=_Q0, r1=_Q1
	extern __m128i _mm_setr_epi64(__m64 _Q0, __m64 _Q1);
	//返回一个__m128i的寄存器,r0=_I0, r1=_I1, r2=_I2, r3=_I3
	extern __m128i _mm_setr_epi32(int _I0, int _I1, int _I2, int _I3);
	//返回一个__m128i的寄存器,r0=_W0, r1=_W1, ... r7=_W7
	extern __m128i _mm_setr_epi16(short _W0, short _W1, short _W2, short _W3,
									short _W4, short _W5, short _W6, short _W7);
	//返回一个__m128i的寄存器,r0=_B15, r1=_B14, ... r15=_B0
	extern __m128i _mm_setr_epi8(char _B15, char _B14, char _B13, char _B12, char _B11,
		char _B10, char _B9, char _B8, char _B7, char _B6, char _B5, char _B4,
		char _B3, char _B2, char _B1, char _B0);
	//返回一个__m128i的寄存器,r=0x0
	extern __m128i _mm_setzero_si128(void);

	//Store Operations(Integer SSE2 Intrinsics)
	//返回为空,它将寄存器_B中的数据存储到_P指向的地址中,实际使用时,
	//_P一般是通过类型转换得到的, *_P = _B, Address _P must be 16-byte aligned
	extern void _mm_store_si128(__m128i *_P, __m128i _B);
	//返回为空,*_P=_B, Address _P does not need to be 16-byte aligned
	extern void _mm_storeu_si128(__m128i *_P, __m128i _B);
	//返回为空,*_P[63:0] =_Q0, lower 64 bits
	extern void _mm_storel_epi64(__m128i *_P, __m128i _Q);
	//返回为空,if(_N0[7]) _P[0]=_D0, if(_N1[7]) _P[1]=_D1, ... if(_N15[7]) _P[15]=_D15,
	//The high bit of each byte in the selector _N determines whether the corresponding byte
	//in _D will be stored. Address _P does not need to be 16-byte aligned
	extern void _mm_maskmoveu_si128(__m128i _D, __m128i _N, char *_P);

	//Integer, moves
	//返回一个__m128i的寄存器,r0=_Q0, r1=0x0, zeroing the upper bits
	extern __m128i _mm_move_epi64(__m128i _Q);
	//返回一个__m128i的寄存器,r0=_Q, r1=0x0, zeroing the upper bits
	extern __m128i _mm_movpi64_epi64(__m64 _Q);
	//返回一个__m64的寄存器,r=_Q0
	extern __m64 _mm_movepi64_pi64(__m128i _Q);

	//Cache Support for Steaming SIMD Extensions 2 Integer Operations
	//返回为空,*_P=_A, Stores the data in _A to the address _P without polluting the caches.
	//If the cache line containing address _P is already in the cache, the cache will be updated.
	//Address _P must be 16-byte aligned
	extern void _mm_stream_si128(__m128i *_P, __m128i _A);
	//返回为空,Cache line containing _P is flushed and invalidated from
	//all caches in the coherency domain
	extern void _mm_clflush(void const*_P);
	//返回为空,Guarantees that every load instruction that precedes, in program order, the load
	//fence instruction is globally visible before any load instruction
	//that follows the fence in program order
	extern void _mm_lfence(void);
	//返回为空,Guarantees that every memory access that precedes, in program order,
	//the memory fence instruction is globally visible before any memory instruction
	//that follows the fence in program order
	extern void _mm_mfence(void);
	//返回为空,*_P=_I, Stores the data in _I to the address _P without polluting the caches.
	//If the cache line containing address _P is already in the cache, the cache will be updated
	extern void _mm_stream_si32(int *_P, int _I);
	//返回为空,The execution of the next instruction is delayed an implementation specific
	//amount of time. The instruction does not modify the architectural state. This intrinsic
	//provides especially significant performance gain
	extern void _mm_pause(void);

	/*---Support for casting between various SP, DP, INT vector types. Note that these do no
		conversion of values, they just change the type----*/
	//返回一个__m128的寄存器,Applies a type cast to reinterpret two 64-bit floating
	//point values passed in as a 128-bit parameter as packed 32-bit floating point values
	extern __m128  _mm_castpd_ps(__m128d);
	//返回一个__m128i的寄存器,Applies a type cast to reinterpret two 64-bit
	//floating point values passed in as a 128-bit parameter as packed 32-bit integers
	extern __m128i _mm_castpd_si128(__m128d);
	//返回一个__m128d的寄存器,Applies a type cast to reinterpret four 32-bit floating
	//point values passed in as a 128-bit parameter as packed 64-bit floating point values
	extern __m128d _mm_castps_pd(__m128);
	//返回一个__m128i的寄存器,Applies a type cast to reinterpret four 32-bit floating
	//point values passed in as a 128-bit parameter as packed 32-bit integers
	extern __m128i _mm_castps_si128(__m128);
	//返回一个__m128的寄存器,Applies a type cast to reinterpret four 32-bit integers
	//passed in as a 128-bit parameter as packed 32-bit floating point values
	extern __m128  _mm_castsi128_ps(__m128i);
	//返回一个__m128d的寄存器,Applies a type cast to reinterpret four 32-bit
	//integers passed in as a 128-bit parameter as packed 64-bit floating point values
	extern __m128d _mm_castsi128_pd(__m128i);

再分享一下我老师大神的人工智能教程吧。零基础!通俗易懂!风趣幽默!还带黄段子!希望你也加入到我们人工智能的队伍中来!https://blog.csdn.net/jiangjunshow

原文地址:https://www.cnblogs.com/xkiwnchwhd/p/10316337.html

时间: 2024-11-05 18:46:20

SSE2 Intrinsics各函数介绍的相关文章

SSE4 1和SSE4 2 Intrinsics各函数介绍

SIMD相关头文件包括: //#include <ivec.h>//MMX //#include <fvec.h>//SSE(also include ivec.h) //#include <dvec.h>//SSE2(also include fvec.h) #include <mmintrin.h> //MMX #include <xmmintrin.h> //SSE(include mmintrin.h) #include <emmi

Neon Intrinsics各函数介绍

#ifndef __ARM_NEON__ #error You must enable NEON instructions (e.g. -mfloat-abi=softfp -mfpu=neon) to use arm_neon.h #endif /*(1).正常指令:生成大小同样且类型通常与操作数向量同样的结果向量: (2).长指令:对双字向量操作数运行运算,生成四字向量的结果.所生成的元素通常是操作数元素宽度的两倍, 并属于同一类型. (3).宽指令:一个双字向量操作数和一个四字向量操作数运

0-C相关01:NSlog函数介绍。

  NSlog()函数介绍: 首先:NSlog()函数是cocoa的框架中提供的一个方法: 下图中最上方是它在Xcode中的路径: : 同样都是输出函数.下边我们来看一下,在O-C中NSlog()和在 c 语言中的printf的一些不同: 1.nslog 和printf都可以输出字符串到控制台.@"1213244" @开头表示oc的字符串. 2.NSlog()在打印时能自带一次自动换行,后者没有,想换行需要\手动添加"\n".当然在NSlog()中也可以手动添加&q

1.socket编程:socket编程,网络字节序,函数介绍,IP地址转换函数,sockaddr数据结构,网络套接字函数,socket相关函数,TCP server和client

 1  Socket编程 socket这个词可以表示很多概念: 在TCP/IP协议中,"IP地址+TCP或UDP端口号"唯一标识网络通讯中的一个进程,"IP 地址+端口号"就称为socket. 在TCP协议中,建立连接的两个进程各自有一个socket来标识,那么这两个socket组成的socket pair就唯一标识一个连接.socket本身有"插座"的意思,因此用来描述网络连 接的一对一关系. TCP/IP协议最早在BSD UNIX上实现,

第16课-数据库开发及ado.net-数据库SQl,创建数据库和表,增删改语句,约束,top和Distinct,聚合函数介绍

第16课-数据库开发及ado.net 数据库SQl,创建数据库和表,增删改语句,约束,top和Distinct,聚合函数介绍 SQL语句入门(脚本.命令) SQL全名是结构化查询语言(Structured Query Language) SOL语句是和DBMS“交谈”专用的语言,不同的DBMS都认SQL语法. Sql中字符串使用单引号:通过写俩个单引号来转义一个单引号. Sql中的注释“——” 单行注释比较好 判断俩个数据是否相等使用=(单等号) 在sql语句中sql代码不区分大小写 SQL主要

JQuery AJAX函数介绍

jQuery 库拥有完整的 Ajax 兼容套件.其中的函数和方法允许我们在不刷新浏览器的情况下从服务器加载数据. 函数介绍 JOuery.ajax():执行异步HTTP(Ajax)请求. .ajaxComplete():当Ajax请求完成时注册要调用的处理程序.这是一个Ajax事件. .ajaxError:当Ajax请求完成且出现错误时注册要调用的处理程序.这是一个Ajax事件. .ajaxSend():在Ajax请求发送之前显示一条消息. jQuery.ajaxSetup():设置将来的Aja

php session_id()函数介绍及代码实例

session_id()功能: 获取设置当前回话ID. 函数说明: string session_id ([ string $id ] ) 参数: 如果指定了参数$id,那么函数会替换当前的回话id. session_id()函数必须在session_start()函数之前调用. 返回值: session_id返回当前会话id字符串.如果当前没有产生会话,则返回空字符串"". 代码示例1: 输出 session_id() 1 2 3 4 <?php     session_sta

postgis经常使用函数介绍(一)

概述: 在进行地理信息系统开发的过程中,经常使用的空间数据库有esri的sde,postgres的postgis以及mySQL的mysql gis等等,在本文.给大家介绍的是有关postgis的一些经常使用函数的意思以及使用. 说明: 本文中所使用postgres的版本号为9.4.0.你可从我的百度网盘获取相关的安装包,安装包地址例如以下: postgres:http://pan.baidu.com/s/1o69WORK postgres空间扩展:http://pan.baidu.com/s/1

PHP ob_start() 函数介绍

ob_start() 函数介绍: http://www.nowamagic.net/php/php_ObStart.php ob_start()作用: http://zhidao.baidu.com/link?url=qhOcqHCNitPuSSKZOVI8bsW_eZaJYqZJ1cLctQDTWKvnBbV4pQVyYvfi3-v4whainj_WNTiQw2KPex6ZUGqR0IiujRWV79PtOh3jAPUwAEu ob相关函数 http://www.nowamagic.net/l