bzoj2783 树

第一行是两个整数N和S,其中N是树的节点数。

第二行是N个正整数,第i个整数表示节点i的正整数。

接下来的N-1行每行是2个整数x和y,表示y是x的儿子。

输出格式:

输出路径节点总和为S的路径数量。


输入样例:


输出样例:


3 3

1 2 3

1 2

1 3


2

数据范围:

对于30%数据,N≤100;

对于60%数据,N≤1000;

对于100%数据,N≤100000,所有权值以及S都不超过1000。

倍增预处理出每个节点向上走2^k步到达的点和权值和,对每个点二分向上能走(权值和小于S)的距离

#include<cstdio>
inline int input(){
    int x=0,c=getchar();
    while(c>57||c<48)c=getchar();
    while(c>47&&c<58)x=x*10+c-48,c=getchar();
    return x;
}
const int N=100055;
int n,S,ans=0;
int vs[20][N],fa[20][N];
int main(){
    n=input();S=input();
    for(int i=1;i<=n;i++)vs[1][i]=input();
    for(int i=1,a,b;i<n;i++){
        a=input();b=input();
        fa[1][b]=a;
    }
    for(int t=1;t<19;t++){
        for(int i=1;i<=n;i++){
            int f=fa[t][i];
            fa[t+1][i]=fa[t][f];
            vs[t+1][i]=vs[t][f]+vs[t][i];
        }
    }
    for(int i=1;i<=n;i++){
        int s=S,w=i;
        for(int k=18;k;k--){
            int f=fa[k][w];
            if(!f)continue;
            if(vs[k][w]<s)s-=vs[k][w],w=f;
        }
        if(s==vs[1][w])++ans;
    }
    printf("%d\n",ans);
    return 0;
}
时间: 2024-10-11 21:20:28

bzoj2783 树的相关文章

【BZOJ2783】[JLOI2012]树 DFS+栈+队列

[BZOJ2783][JLOI2012]树 Description 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度是0,它的儿子节点的深度为1.路径不必一定从根节点开始. Input 第一行是两个整数N和S,其中N是树的节点数. 第二行是N个正整数,第i个整数表示节点i的正整数. 接下来的N-1行每行是2个整数x和y,表示y是x的儿子. Output 输出路径节点总和为S的路径数量. Sa

[bzoj2783][JLOI2012]树_树的遍历

树 bzoj2783 JLOI2012 题目大意:给定一棵n个点的树.求满足条件的路径条数.说一个路径是满足条件的,当且仅当这条路径上每个节点深度依次递增且点权和为S. 注释:$1\le n\le 10^5$,$1\le S,val_i\le 10^3$. 想法:翻lijinnn的blog翻到的水题. 我们直接遍历整棵树,遍历的时候维护全局桶.然后在回溯的时候将这个点对应的dis删除.这样遍历到每个点时桶内对应的就是这个点到根节点的dis桶,直接统计答案即可. 最后,附上丑陋的代码... ...

bzoj2783: [JLOI2012]树

2783: [JLOI2012]树 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 753  Solved: 447[Submit][Status][Discuss] Description 数列 提交文件:sequence.pas/c/cpp 输入文件:sequence.in 输出文件:sequence.out 问题描述: 把一个正整数分成一列连续的正整数之和.这个数列必须包含至少两个正整数.你需要求出这个数列的最小长度.如果这个数列不存在则输出-

【bzoj2783】【JLOI2012】【树】【set】

在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度是0,它的儿子节点的深度为1.路径不必一定从根节点开始. Input 第一行是两个整数N和S,其中N是树的节点数. 第二行是N个正整数,第i个整数表示节点i的正整数. 接下来的N-1行每行是2个整数x和y,表示y是x的儿子. Output 输出路径节点总和为S的路径数量. Sample Input 3 3 1 2 3 1 2 1 3 Sampl

BZOJ2783: [JLOI2012]树 dfs+set

2783: [JLOI2012]树 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 588  Solved: 347 Description 数列 提交文件:sequence.pas/c/cpp 输入文件:sequence.in 输出文件:sequence.out 问题描述: 把一个正整数分成一列连续的正整数之和.这个数列必须包含至少两个正整数.你需要求出这个数列的最小长度.如果这个数列不存在则输出-1. 输入格式: 每行包含一个正整数n. 每个文件

bzoj2783【JLOI2012】树

2783: [JLOI2012]树 Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 668  Solved: 389 [Submit][Status][Discuss] Description 数列 提交文件:sequence.pas/c/cpp 输入文件:sequence.in 输出文件:sequence.out 问题描述: 把一个正整数分成一列连续的正整数之和.这个数列必须包含至少两个正整数.你需要求出这个数列的最小长度.如果这个数列不存在则输

【JLOI2012】【BZOJ2783】树

Description 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度是0,它的儿子节点的深度为1.路径不必一定从根节点开始. Input 第一行是两个整数N和S,其中N是树的节点数. 第二行是N个正整数,第i个整数表示节点i的正整数. 接下来的N-1行每行是2个整数x和y,表示y是x的儿子. Output 输出路径节点总和为S的路径数量. Sample Input 3 3 1 2 3 1

【dfs】【哈希表】bzoj2783 [JLOI2012]树

因为所有点权都是正的,所以对每个结点u来说,每条从根到它的路径上只有最多一个结点v符合d(u,v)=S. 所以我们可以边dfs边把每个结点的前缀和pre[u]存到一个数据结构里面,同时查询pre[u]-S是否存在. 数据结构用set.hashtable(随便卡)(需要支持删除,由于总是删掉最后一个,因此可以实现)都行. #include<cstdio> #include<cstring> using namespace std; #define MAXN 100001 #defin

HDU 6203 ping ping ping [LCA,贪心,DFS序,BIT(树状数组)]

题目链接:[http://acm.hdu.edu.cn/showproblem.php?pid=6203] 题意 :给出一棵树,如果(a,b)路径上有坏点,那么(a,b)之间不联通,给出一些不联通的点对,然后判断最少有多少个坏点. 题解 :求每个点对的LCA,然后根据LCA的深度排序.从LCA最深的点对开始,如果a或者b点已经有点被标记了,那么continue,否者标记(a,b)LCA的子树每个顶点加1. #include<Bits/stdc++.h> using namespace std;