pandas groupby

pandas.DataFrame.groupby

DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs)

Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.
    Parameters:

by : mapping function / list of functions, dict, Series, or tuple /

list of column names. Called on each element of the object index to determine the groups. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups

axis : int, default 0

level : int, level name, or sequence of such, default None

If the axis is a MultiIndex (hierarchical), group by a particular level or levels

as_index : boolean, default True

For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output

sort : boolean, default True

Sort group keys. Get better performance by turning this off. Note this does not influence the order of observations within each group. groupby preserves the order of rows within each group.

group_keys : boolean, default True

When calling apply, add group keys to index to identify pieces

squeeze : boolean, default False

reduce the dimensionality of the return type if possible, otherwise return a consistent type

Returns:

GroupBy object

Examples

DataFrame results

>>> data.groupby(func, axis=0).mean()
>>> data.groupby([‘col1‘, ‘col2‘])[‘col3‘].mean()

DataFrame with hierarchical index

>>> data.groupby([‘col1‘, ‘col2‘]).mean()
时间: 2024-11-05 19:41:36

pandas groupby的相关文章

[Python Cookbook] Pandas Groupby

Groupby Count # Party's Frequency of donations nyc.groupby('Party')['contb receipt amt'].count() The command returns a series where the index is the name of a Party and the value is the count of that Party. Note that the series is ordered by the name

Python Pandas GroupBy

global root # 合并Excel表格 filearray = [] filelocation = glob.glob(root + "\*.xls") for filename in filelocation: filearray.append(filename) res = pd.read_excel(filearray[0]) for i in range(1, len(filearray)): A = pd.read_excel(filearray[i]) res =

如何用Python搭建一个简单的推荐系统?

推荐系统的相关知识我们已在前文中提到,在这篇文章中,我们会介绍如何用Python来搭建一个简单的推荐系统. 本文使用的数据集是MovieLens数据集,该数据集由明尼苏达大学的Grouplens研究小组整理.它包含1,10和2亿个评级. Movielens还有一个网站,我们可以注册,撰写评论并获得电影推荐.接下来我们就开始实战演练. 在这篇文章中,我们会使用Movielens构建一个基于item的简易的推荐系统.在开始前,第一件事就是导入pandas和numPy. import pandas a

Pandas 的groupby操作

本文和大家分享的主要是Pandas 的groupby操作相关内容,一起来看看吧,希望对大家学习Pandas有所帮助. 在做数据分析的时候,我们的数据一般从数据库来,那么就涉及到groupby操作.例如,我们要预测一个居民小区的未来一段时间的电费,那么就要将数据按照小区groupby,然后按照时间排序,这里groupby操作可完美的完成这个任务. 假设数据表cellfee结构为: reportdate, cidyid, cellid, fee. 读取表数据 import pandas as pdf

python处理数据的风骚操作[pandas 之 groupby&agg]

https://segmentfault.com/a/1190000012394176 介绍 每隔一段时间我都会去学习.回顾一下python中的新函数.新操作.这对于你后面的工作是有一定好处的.本文重点介绍了pandas中groupby.Grouper和agg函数的使用.这2个函数作用类似,都是对数据集中的一类属性进行聚合操作,比如统计一个用户在每个月内的全部花销,统计某个属性的最大.最小.累和.平均等数值. 其中,agg是pandas 0.20新引入的功能 groupby && Grou

pandas.DataFrame的groupby()方法的基本使用

pandas.DataFrame的groupby()方法是一个特别常用和有用的方法.让我们快速掌握groupby()方法的基础使用,从此数据分析又多一法宝. 首先导入package: import pandas as pd import numpy as np groupby的最基本操作 df = pd.DataFrame({'A':[1,2,3,1],'B':[2,3,3,6],'C':[3,1,5,7]}) df 按照A列来进行分组(其实说白了就是将A列中重复的值和成同一个值,然后把A当成索

pandas聚合和分组运算之groupby

pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片.切块.摘要等操作.根据一个或多个键(可以是函数.数组或DataFrame列名)拆分pandas对象.计算分组摘要统计,如计数.平均值.标准差,或用户自定义函数.对DataFrame的列应用各种各样的函数.应用组内转换或其他运算,如规格化.线性回归.排名或选取子集等.计算透视表或交叉表.执行分位数分析以及其他分组分析. 1.首先来看看下面这个非常简单的表格型数据集(以DataFrame的形式): impo

Pandas | 18 GroupBy 分组

任何分组(groupby)操作都涉及原始对象的以下操作之一: 分割对象 应用一个函数 结合的结果 在许多情况下,我们将数据分成多个集合,并在每个子集上应用一些函数.在应用函数中,可以执行以下操作: 聚合 - 计算汇总统计 转换 - 执行一些特定于组的操作 过滤 - 在某些情况下丢弃数据 下面来看看创建一个DataFrame对象并对其执行所有操作 - import pandas as pd ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'De

Pandas 数据分析——超好用的 Groupby 详解

在日常的数据分析中,经常需要将数据根据某个(多个)字段划分为不同的群体(group)进行分析,如电商领域将全国的总销售额根据省份进行划分,分析各省销售额的变化情况,社交领域将用户根据画像(性别.年龄)进行细分,研究用户的使用情况和偏好等.在 Pandas 中,上述的数据处理操作主要运用 groupby 完成,这篇文章就介绍一下 groupby 的基本原理及对应的 agg.transform 和 apply 操作.PS:很多人在学习Python的过程中,往往因为遇问题解决不了或者没好的教程从而导致