(白书训练计划)UVa 12627 Erratic Expansion(递归+找规律)

题目地址:UVa 12627

这题是先找规律,规律在于对于第k个小时的来说,总是可以分成右下角全是蓝色气球,右上角,左下角与左上角三个一模一样的k-1个小时的气球。这样的话,规律就很清晰了,然后用递归做比较方便。。。

代码如下:

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm>

using namespace std;
#define LL long long
LL fei[32];
LL cal(LL x)
{
    if(x==0) return 0;
    LL z=1, sum=1;
    while(x>=z)
    {
        sum*=3;
        z*=2;
    }
    return sum/3+2*cal(x-z/2);
}
void init()
{
    int i;
    fei[0]=1;
    for(i=1; i<=30; i++)
        fei[i]=fei[i-1]*2;
}
int main()
{
    LL n, i, t, ans, k, a, b, num=0;
    scanf("%lld",&t);
    init();
    while(t--)
    {
        scanf("%lld%lld%lld",&k,&a,&b);
        num++;
        a=fei[k]-a+1;
        b=fei[k]-b+1;
        ans=cal(a)-cal(b-1);
        printf("Case %lld: %lld\n",num,ans);
    }
    return 0;
}
时间: 2024-10-05 03:03:18

(白书训练计划)UVa 12627 Erratic Expansion(递归+找规律)的相关文章

uva 12627 - Erratic Expansion(递归求解)

递归的边界条件写的多了--没必要写呢么多的.. 不明白可共同探讨~ #include<cstdio> #include<iostream> #include<cmath> using namespace std; long long dp(int kk,int pos) { int n=kk;int temp=(int)pow(2,n); // printf("%d %d\n",kk,pos); if(kk==0&&pos==1) r

Uva 12627 Erratic Expansion(递归)

这道题大体意思是利用一种递归规则生成不同的气球,问在某两行之间有多少个红气球. 我拿到这个题,一开始想的是递归求解,但在如何递归求解的思路上我的方法是错误的.在研读了例题上给出的提示后豁然开朗(顺便吐槽一下算法竞赛第二版在这这道题目上(P246)提示写的有问题,g(k,i)=2g(k-1,i-2^(k-1))+c(k-1)  ,他把c(k-1)写成了c(k)...我纠结这个纠结了好久) 根据题目提示,这道题可以用f(k,i)表示k小时后最上边i行的红气球总数 那么我们的答案就可以表示为f(k,b

UVA - 12627 Erratic Expansion(奇怪的气球膨胀)(递归)

题意:问k小时后,第A~B行一共有多少个红气球. 分析:观察图可发现,k小时后,图中最下面cur行的红气球个数满足下式: (1)当cur <= POW[k - 1]时, dfs(k, cur) = dfs(k - 1, cur); (2)当cur > POW[k - 1]时, dfs(k - 1, cur) = 2 * dfs(k - 1, cur - POW[k - 1]) + tot[k - 1]; 其中,POW[k - 1]为2^(k  - 1),tot[k - 1]为k-1小时后图中的

UVA - 12627 Erratic Expansion 奇怪的气球膨胀 (分治)

紫书例题p245 Piotr found a magical box in heaven. Its magic power is that if you place any red balloon inside it then, after one hour, it will multiply to form 3 red and 1 blue colored balloons. Then in the next hour, each of the red balloons will multip

(记忆化+暴力)UVA - 12627 Erratic Expansion

题意:一个数列,一开始只有一个1,进行k次操作,每次操作都把数列中原本的数全都翻倍然后追加在数列的后面,形成了一个全新的数列,输出全新数列中l到r的和. 分析:以上的题意是经过转化后的题意,变的非常简单,而不在卡在二维的思维中出不来. 可以看到如果在后半段,就等于前半段对应位置的两倍,可以从最高2^k个数的维护,k不断-1,最终变成维护数列中第一个1,直接返回1即可,形成了一个完美的递归. 1 ll dg(int u ,int d,int k) { 2 if(u==1&&d==1)retu

UVA 12627 Erratic Expansion

#include<bits/stdc++.h> #define REP(i,a,b) for(int i=a;i<=b;i++) #define MS0(a) memset(a,0,sizeof(a)) using namespace std; typedef long long ll; const int maxn=1000100; const int INF=1<<29; ll k,a,b; ll s[maxn]; ll f(ll i,ll k) { if(i==0) r

UVA 1363 Joseph&#39;s Problem 找规律+推导 给定n,k;求k%[1,n]的和。

/** 题目:Joseph's Problem 链接:https://vjudge.net/problem/UVA-1363 题意:给定n,k;求k%[1,n]的和. 思路: 没想出来,看了lrj的想法才明白. 我一开始往素数筛那种类似做法想. 想k%[1,n]的结果会有很多重复的,来想办法优化. 但没走通. 果然要往深处想. 通过观察数据发现有等差数列.直接观察很难确定具体规律:此处应该想到用式子往这个方向推导试一试. lrj想法: 设:p = k/i; 则:k%i = k-i*p; 容易想到

(白书训练计划)UVa 11054 Wine trading in Gergovia(等价转换)

题目地址:UVa 11054 很巧妙的一道题,这题是利用的等价转换,对每一条路来说,假如右边生产的比左边的多x,那么不管起点是哪,终点是哪,都可以把左右两侧的看成两个点,要从这条路上运送x个劳动力.再由于总和是0,所以只需要算出一端的总和就可以,这样只要遍历一遍就可以算出来了.写出代码就很简单了... 代码如下: #include <iostream> #include <stdio.h> #include <string.h> #include <stdlib.

(白书训练计划)UVa 1152 4 Values whose Sum is 0(中途相遇法。。)

题目地址:UVa 1152 先枚举A集合与B集合的和,存起来,然后再枚举C集合与D集合的和,看与存起来的值有多少个是互为相反数的.水题.找存起来的值时可以用二分找. 代码如下: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <stdlib.h> #include <math.h> #include <ctyp