本人用到了spss重要功能总结

一、SPSS篇

(1)用spss剔除异常值

异常值:一组观测值中与平均值的偏差超过两倍标准差的测定值。

一、analyze >> descriptive statistics >>descriptives>>  选择变量(列)到右边的框里>>点选save standardized values as variables >>选择ok

二、在data里选中select cases,之后选择if相关,点按钮设置,进入后输入-2<=变量&变量<=2,continue,之后Unselected casees are filtered 或者deleted,然后OK

(2)相关性分析

指标:相关性系数和p值。sig即p值,代表假设检验中的显著性,通常如果sig<0.05,

拒绝虚无假设(原假设),接受备择假设,反之则无充分理由拒绝虚无假设

对于相关分析,通常sig<0.05就是研究者想看到的结果,因为这意味着相关系数有统计 学意义,变量间的确存在相关

a.Spearson相关:计算相关系数并作显著性检验,适用于两列变量都为正态分布的连续

变量或等间距测度的变量

b.kendall  tau-b等级相关 计算相关系数并作显著性检验,对数据分布没有严格要求,

适用于检验等级变量之间的关联程度(秩相关)

c.spearman 等级相关 计算相关系数并做显著性检验,对数据分布没有严格要求,适用

于等级变量或者等级变量不满足正态分布的情况。

对于非等间距测度的连续变量,因为分布不明可以使用等级相关分析,也可以使用

Pearson 相关分析,

对于完全等级的离散变量,必须使用等级相关分析相关性

当资料不服从双变量正态分布或总体分布型未知,或原始数据是用等级表示时,宜用

Spearman 或Kendall相关

一般情况下我们都某人数据服从正态分布,采用pearson相关系数

偏相关:偏相关分析要考虑除却分析的变量之外是否有其它变量影响到这两个变量。(譬如,分析身高和短跑成绩的相关性,因为肺活量也影响到了身高和短跑成绩,所以需要剔除这个变量的影响)

距离相关分析:计算个案之间距离相似性和相异性

(1)回归分析

线性回归、非线性回归、分类回归。线性回归的定义:是基于最小二乘法原理产生的古典统计假设下的最优线性无偏估计。是研究一个或多个自变量与一个因变量之间是否存在某种线性关系的统计学方法。

在统计量选项卡中一般勾选估计、模型拟合度、共线性诊断和DW检验统计量。

一般以容忍度、方差膨胀因子(VIF,容忍度的倒数)作为共线性诊断指标。一般来说,容忍度的值介于0和1之间,如值太小,说明这个自变量与其它自变量间存在共线性问题;VIF值越大,则共线性问题越明显,一般以小于10为判断依据(Neter et al.,1985)。DW值用来检验回归分析中的残差项是否存在自相关现象,DW值的取值介于0和4之间:残差一阶正相关时,DW≈0;残差一阶负相关时,DW≈4;残差独立时,DW≈2。分析结果(如表5.3与表5.4)显示,各变量的VIF都远小于10,DW值也符合要求,说明各个自变量之间不存在共线性问题。

分析结果解释:首先看模型汇总表的R方,这个值位于0和1之间,表示你的方程能解释你的模型的百分之多少,越接近1越好。然后看方差分析表,第一行的回归对应的最后边的P值表征这个方程是不是可信(小于0.05则可信)。然后再看系数表,这个表里的P值会告诉你每个自变量在方程里是否可信,同时表里会展示每个自变量在方程中的系数,有非标准化系数(主要看这个)和标准化系数(你的数据标准化以后算出的系数)。P-P图上的每个空心圆都要尽量穿在那个线上边,圆心越靠近那个线越好。

最小二乘法:

(1)描述统计、频数分析

频率:各个变量值的分布频率及描述性统计量。

描述:均值,标准差,方差,范围,峰度(峰度是用于衡量分布的集中程度或分布曲线的尖峭程度的指标),偏度(偏度是用于衡量分布的不对称程度或偏斜程度的指标)。

探索:因变量列表是将列表中的变量作为探索分析中的目标变量,一般为连续性变量或者是比例变量。因子列表是目标变量的分组变量,对所需分析的目标变量进行分组表示,属性一般为字符型或者是数字型。

P-P图:检验数据服从的分布情况。

Q-Q图:检验数据服从的分布情况。

交叉率:交叉表分析主要用来检验两个变量之间是否存在关系,或者说是否独立,其零假设为两个变量之间没有关系。

比率:计算两个变量相对比的统计量特征。(作除法;直接对比)

P-P图是根据变量的累积比例与指定分布的累积比例之间的关系所绘制的图形。通过P-P图可以检验数据是否符合指定的分布。当数据符合指定分布时,P-P图中各点近似呈一条直线。

(1)参数与非参数检验

参数检验的使用条件是被检验的样本总体服从正态分布,而非参数检验使用条件自然就是总体不服从或不确定是否服从正态分布。

参数检验parameter test,对参数平均值方差进行的统计检验,其运用范围有当总体分布已知(如总体为正态分布),根据样本数据对总体分布的统计参数进行推断。此时,总体的分布形式是给定的或是假定的,只是其中一些参数的取值或范围未知,分析的主要目的是估计参数的取值,或对其进行某种统计检验。这类问题往往用参数检验来进行统计推断。它不仅仅能够对总体的特征参数进行推断,还能够实现两个或多个总体的参数进行比较。

参数检验:

比较常见的单样本非参数检验包括游程检验和单样本K-S检验。

游程检验:

它通常用于检测两个不同的观测值出现的次序是否具有随机性。我们选择分析——非参数检验——旧对话框——游程,在主面板的检验变量列表里选入我们的0,1变量列。选项卡里边选择描述性,其他默认。割点可以全选。输出结果看p值就可以了。

单样本K-S检验:

这个就比较重要了。这个检验的目的在于观测样本的分布。只要我们想做相关和回归,那我们就最好用K-S检验来检查一下样本的分布。毕竟pearson相关系数有效的一个重要条件就是样本服从正态分布。

我们选择分析——非参数检验——旧对话框——1样本K-S,在主对话框的检验变量列表里边选入我们想检验分布的变量(比如一群病号的血细胞数),选项卡里勾选描述性和四分位数,其他默认。在检验分布的下边有四个供勾选的框框,这个要注意一下,常规指的就是正态分布,相等则是指均匀分布,勾选你想检验的分布(一般是正态分布)。确定以后就可以看结果了。

多个独立非参数检验:

K-W检验:用来判断各样本分别代表的总体是否一致。

两相关样本非参数检验:

wilcoxon检验:用来检验两个变量的分布是否有差异。

多个相关样本非参数检验:

Friedman检验:用于检验多个相关样本是否来自同一整体,是wilcoxon的扩展。

Kendallw检验:检验样本一致性的好坏。

(1)SPSS做预测

当我们在预测方法创建模型时,记住:一定要先定义数据的时间序列和标记!

要知道数据的起点和时间间隔。

PASW Statistics提供了三大类预测方法:1-专家建模器,2-指数平滑法,3-ARIMA

指数平滑法

指数平滑法有助于预测存在趋势和/或季节的序列,此处数据同时体现上述两种特征。创建最适当的指数平滑模型包括确定模型类型(此模型是否需要包含趋势和/或季节),然后获取最适合选定模型的参数。

为了帮我们找到适当的模型,最好先绘制时间序列。时间序列的可视化检查通常可以很好地指导并帮助我们进行选择。另外,我们需要弄清以下几点:

? 此序列是否存在整体趋势?如果是,趋势是显示持续存在还是显示将随时间而消逝?

? 此序列是否显示季节变化?如果是,那么这种季节的波动是随时间而加剧还是持续稳定存在?

(解释清楚回归分析和相关性分析中的参数检验)

(6)spss做分类

两步聚类、K-均值、系统聚类、决策树、k-近邻

时间: 2024-11-07 11:58:38

本人用到了spss重要功能总结的相关文章

PSPP:顶替SPSS常用功能的优秀软件, Linux 下的经济学用软件

几个替代SPSS的软体Salstat http://salstat.sourceforge.net/PSPP http://www.gnu.org/software/pspp/pspp.htmlR http://www.r -project.org/Macanova http://www.stat.umn.edu/macanova/ Linux 下的经济学用软件 准备学习经济学拉.windows上有很多的软件,linux上的话可能都比较隐蔽... 下面就总结一下: R - project : h

如何用SPSS进行数据分析?

1.什么是SPSS SPSS是社会统计科学软件包的简称, 其官方全称为IBM SPSS Statistics.SPSS软件包最初由SPSS Inc.于1968年推出,于2009年被IBM收购,主要运用于各领域数据的管理和统计分析.作为世界社会科学数据分析的标准,SPSS操作操作界面极其友好,结果输出界面也很美观,同时还配备十分详细的用户手册. 1.1 SPSS的核心功能 ? 1.2 数据编辑功能 可以通过SPSS的数据编辑功能,对数据进行增删改等处理,还可以根据需要对数据进行拆分.加权.排序.聚

iOS UIBezierPath类 介绍

使用UIBezierPath类可以创建基于矢量的路径,这个类在UIKit中.此类是Core Graphics框架关于path的一个封装.使用此类可以定义简单的形状,如椭圆或者矩形,或者有多个直线和曲线段组成的形状. 1.Bezier Path 基础 UIBezierPath对象是CGPathRef数据类型的封装.path如果是基于矢量形状的,都用直线和曲线段去创建.我们使用直线段去创建矩形和多边形,使用曲线段去创建弧(arc),圆或者其他复杂的曲线形状.每一段都包括一个或者多个点,绘图命令定义如

一名小小的SQL Server DBA想谈一下SQL Server的能力

一名小小的SQL Server DBA想谈一下SQL Server的能力 百度上暂时还没有搜索到相关的个人写的比较有价值的文章,至少在中文网络的世界里面没有 但是在微软的网站有这样一篇文章:<比较 SQL Server 与 IBM DB2> 文章从下面几个方面进行了对比 1.TCO和ROI2.性能和可扩展性3.高可用性4.安全5.管理6.开发效率7.商业智能和数据仓库8.OLTP9.SAP集成 文章介绍得比较牛逼 性能与可扩展性 SQL Server 的性能和可扩展性优于IBM DB2. 基准

CRM管理系统(二)下

上一篇写的是WEB部分,接下来就是后台部分了,说实话,框架带来的便捷的确是很大的,基本上的流程就是 mapper->Dao->Service->Controller maper部分还是sql,不过本人偷懒了,增删改查功能就是一条updata语句,原因是数据字典这块肯定是系统管理员使用的,而且一个系统的数据分类也不可能太多,所以博主就偷懒,在系统中一共只能添加10种分类,每个分类对应10条类别信息数据库的设计如下 数据字典分类表 其中SJZDXX_ID为主键,SJZDFL_NAME为分类名

【规范】电子病历系统功能规范(试行)

电子病历系统功能规范(试行) 第一章 总则 第一条 为规范医疗机构电子病历管理,明确医疗机构电子病历系统应当具有的功能,更好地发挥电子病历在医疗工作中的支持作用,促进以电子病历为核心的医院信息化建设工作,根据<中华人民共和国执业医师法>.<医疗机构管理条例>.<病历书写基本规范>.<电子病历基本规范(试行)>和<电子病历基本架构与数据标准(试行)>等法律.法规和规范性文件,制定本规范. 第二条 本规范适用于医疗机构电子病历系统的建立.使用.数据保

chrome下教你如何查看元素绑定的事件

说在开头 在前端调试的时候,我们经常遇到这一个问题,要想审查特定元素上绑定的事件; 通常来讲,在chrome开发者工具有一栏Event listeners可以查看特定元素上绑定的事件 如下图所示: 这里我做了一个测试,不管是使用Dom0级规范中 listeners均能显示所绑定事件类型,并且点击对应js文件后,能正确指向对应的事件处理函数. 更加强大的是,如果我们给其父元素绑定事件,由于事件冒泡的关系,查看子元素的Event listeners中也能看到该事件: 当然查看父元素的Event li

CSS的几款流行预处理器

预处理器是一种程序,需要将一种程序的数据转换成另一种程序的数据.它可以帮助我们编写可维护的.与时俱进的代码,也可以减少需要编写的CSS数量,这些工具对于哪些需要大量样式表和样式规则的大型用户界面是非常有帮助的. SASS 首先是SASS,拥有多年开元历史项目.可以说他定义了现代CSS预处理器也不为过. 它的比较实用的语法有: 变量 sass的变量必须是$开头,后面紧跟变量名,而变量值和变量名之间就需要使用冒号(:)分隔开(就像CSS属性设置一样),如果值后面加上!default则表示默认值. 普

工程一:记事本的实现

以下是本人设计的java记事本,功能比较简单粗暴,不足之处,欢迎各路大神指正! 以下是UI层的代码 //记事本界面层 import java.awt.*; import java.awt.datatransfer.*; import java.awt.event.*;//问题:(此处注释掉变编译不通过) import javax.swing.*; import java.awt.datatransfer.*; import javax.swing.undo.*; import javax.swi