设计模式之解释器

定义:给定一种语言,定义他的文法的一种表示,并定义一个解释器,该解释器使用该表示来解释语言中句子。

类型:行为类模式

类图:

解释器模式是一个比较少用的模式,本人之前也没有用过这个模式。下面我们就来一起看一下解释器模式。

解释器模式的结构

  • 抽象解释器:声明一个所有具体表达式都要实现的抽象接口(或者抽象类),接口中主要是一个interpret()方法,称为解释操作。具体解释任务由它的各个实现类来完成,具体的解释器分别由终结符解释器TerminalExpression和非终结符解释器NonterminalExpression完成。
  • 终结符表达式:实现与文法中的元素相关联的解释操作,通常一个解释器模式中只有一个终结符表达式,但有多个实例,对应不同的终结符。终结符一半是文法中的运算单元,比如有一个简单的公式R=R1+R2,在里面R1和R2就是终结符,对应的解析R1和R2的解释器就是终结符表达式。
  • 非终结符表达式:文法中的每条规则对应于一个非终结符表达式,非终结符表达式一般是文法中的运算符或者其他关键字,比如公式R=R1+R2中,+就是非终结符,解析+的解释器就是一个非终结符表达式。非终结符表达式根据逻辑的复杂程度而增加,原则上每个文法规则都对应一个非终结符表达式。
  • 环境角色:这个角色的任务一般是用来存放文法中各个终结符所对应的具体值,比如R=R1+R2,我们给R1赋值100,给R2赋值200。这些信息需要存放到环境角色中,很多情况下我们使用Map来充当环境角色就足够了。

代码实现

package com.example.zztest.jieshi.express;

//抽象表达式
public abstract class AbstractExpression {

public abstract void Interpret(MyContext con);
}

package com.example.zztest.jieshi.express;

//终结符表达式
public class TerminalExpression extends AbstractExpression{

public void Interpret(MyContext con) {
// TODO Auto-generated method stub
System.out.println("终端解释器");
}

}

package com.example.zztest.jieshi.express;
//非终结符表达式
public class NonTerminalExpression extends AbstractExpression{

@Override
public void Interpret(MyContext con) {
// TODO Auto-generated method stub
System.out.println("no终端解释器");
}

}

package com.example.zztest.jieshi.express;

public class MyContext {

private String input;
private String output;
public String getInput() {
return input;
}
public void setInput(String input) {
this.input = input;
}
public String getOutput() {
return output;
}
public void setOutput(String output) {
this.output = output;
}

}

调用测试:

package com.example.zztest.jieshi.express;

import java.util.ArrayList;
import java.util.List;

public class ExpClient {

public static void test(){
MyContext myc=new MyContext();
List<AbstractExpression> list=new ArrayList<AbstractExpression>();
list.add(new TerminalExpression());
list.add(new NonTerminalExpression());
list.add(new TerminalExpression());
list.add(new TerminalExpression());
for(int i=0;i<list.size();i++){
list.get(i).Interpret(myc);
}
}
}

时间: 2024-09-28 20:34:23

设计模式之解释器的相关文章

大话设计模式_解释器模式(Java代码)

解释器模式:给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子. 简单描述:一个AbstractExpression类,多个子类,存在一个Interpret方法,转义Context对象的信息.客户端根据信息实例化不同的Expression类,并调用其转义方法(这个过程可以使用简单工厂+反射进行) 大话设计模式中的截图: 代码例子: 假设HTML代码解释器: (1)第一类标签<HTML>(开始)/<HEAD>(头信息)/<BODY&g

GOF23设计模式之解释器模式和访问器模式的理解

设计模式之解释器模式Interpreter      是一种不常用的设计模式      用于描述如何构成一个简单的语言解释器,主要用于使用面向对象语言开发的编译器和解释器设计.      当我们需要开发一种新的语言时,可以考虑使用解释器模式.      尽量不要使用解释器模式,后期维护会有很大麻烦.在项目中可以使用jruby,Groovy,java的js引擎来代替解释器的作用,弥补java语言的不足. 开发中常见的场景:      EL表达式的处理      正则表达式解释器      SQL语

设计模式之解释器模式(Interpreter)摘录

23种GOF设计模式一般分为三大类:创建型模式.结构型模式.行为模式. 创建型模式抽象了实例化过程,它们帮助一个系统独立于如何创建.组合和表示它的那些对象.一个类创建型模式使用继承改变被实例化的类,而一个对象创建型模式将实例化委托给另一个对象.创建型模式有两个不断出现的主旋律.第一,它们都将关于该系统使用哪些具体的类的信息封装起来.第二,它们隐藏了这些类的实例是如何被创建和放在一起的.整个系统关于这些对象所知道的是由抽象类所定义的接口.因此,创建型模式在什么被创建,谁创建它,它是怎样被创建的,以

C#设计模式:解释器模式(Interpreter Pattern)

一,C#设计模式:解释器模式(Interpreter Pattern) 1,解释器模式的应用场合是Interpreter模式应用中的难点,只有满足“业务规则频繁变化,且类似的模式不断重复出现,并且容易抽象为语法规则的问题”才适合使用解释器模式2,解释器设计模式每个解释的类有自己的规则,并且与其他业务规则不冲突 二,如下代码 using System; using System.Collections.Generic; using System.Linq; using System.Text; u

Head First设计模式之解释器模式

一.定义 给定一个语言,定义它的文法表示,并定义一个解释器,这个解释器使用该标识来解释语言中的句子. 主要解决:对于一些固定文法构建一个解释句子的解释器. 何时使用:如果一种特定类型的问题发生的频率足够高,那么可能就值得将该问题的各个实例表述为一个简单语言中的句子.这样就可以构建一个解释器,该解释器通过解释这些句子来解决该问题. 如何解决:构件语法树,定义终结符与非终结符. 二.结构 组成: AbstractExpression(抽象表达式):定义解释器的接口,约定解释器的解释操作. Termi

php设计模式之解释器模式

解释器设计模式用于分析一个实体的关键元素,并且针对每个元素都提供自己的解释或相应的动作. <?php /** * 解释器模式 */ class User { protected $_username; public function __construct($username) { $this->_username = $username; } public function getProfilePage() { $profile = "<h2>I like never

【GOF23设计模式】解释器模式 &amp; 访问者模式

来源:http://www.bjsxt.com/ 一.[GOF23设计模式]_解释器模式.访问者模式.数学表达式动态解析库式 1.解释器模式Interpreter  2.访问者模式Visitor 

【Unity与23种设计模式】解释器模式(Interpreter)

GoF中定义: "定义一个程序设计语言所需要的语句,并提供解释来解析(执行)该语言." 传统上,执行程序代码通常通过两种方式 第一种:编译程序 第二种:解释器 常见的使用解释器的程序设计语言 包含流行与网页设计领域中的脚本语言 如JavaScript.PHP.Ruby等 这些程序代码经过一般文本编辑器编写完成后放入指定的位置 就可以由应用程序中的解释器直接执行 包括Lua Unity中 编写好的脚本程序执行之前会被UnityEngine编译过 严格来说不算是解释器模式 但与十几年前的开

设计模式之解释器模式--- Pattern Interpreter

模式的定义 类型 行为类 模式的使用场景 优点 缺点 UML类图 角色介绍 模式的通用源码 输出结果 Android源码中的模式实现 杂谈 参考资料 (1).设计模式之禅-第27章 解释器模式 (2)解释器模式 https://github.com/simple-android-framework/android_design_patterns_analysis

设计模式之解释器、调停者模式

解释器模式和调停者模式都是行为型模式,由于二者用的情形比较少,不作过多解读,介绍一下相关概念,以作参考. 解释器模式有点儿“编译器”的概念,像个超级简单的编译器,且跟硬件无关,它的目的是定义语言(使用规定格式和语法的代码)的文法,然后建立一个解释器来解释该语言中的句子. 在 GOF 的书中指出:如果一种特定类型的问题发生的频率足够高,那么可能就值得将该问题的各个实例表述为一个简单语言中的句子.这样就可以构建一个解释器,该解释器通过解释这些句子来解决该问题.而且当文法简单.效率不是关键问题的时候效