Python爬虫入门教程 3-100 美空网数据爬取

简介

从今天开始,我们尝试用2篇博客的内容量,搞定一个网站叫做“美空网”网址为:http://www.moko.cc/, 这个网站我分析了一下,我们要爬取的图片在 下面这个网址

http://www.moko.cc/post/1302075.html

然后在去分析一下,我需要找到一个图片列表页面是最好的,作为一个勤劳的爬虫coder,我找到了这个页面

http://www.moko.cc/post/da39db43246047c79dcaef44c201492d/list.html

列表页面被我找到了,貌似没有分页,这就简单多了,但是刚想要爬,就翻车了,我发现一个严重的问题。

http://www.moko.cc/post/==da39db43246047c79dcaef44c201492d==/list.html

我要做的是一个自动化的爬虫,但是我发现,出问题了,上面那个黄色背景的位置是啥?

ID,昵称,个性首页,这个必须要搞定。

我接下来随机的找了一些图片列表页,试图找到规律到底是啥?

  1. http://www.moko.cc/post/978c74a0375f4edca114e87b0a45a0b5/list.html
  2. http://www.moko.cc/post/jundayi/list.html
  3. http://www.moko.cc/post/slavik/list.html
  4. ......

没什么问题,发现规律了

http://www.moko.cc/post/==个性昵称(中文昵称是一个加密的串)==/list.html

这就有点意思了,我要是能找到尽量多的昵称,不就能拼接出来我想要得所有地址了吗

开干!!!

手段,全站乱点,找入口,找切入点,找是否有API

.... .... 结果没找着

下面的一些备选方案

趴这个页面,发现只有 20页 http://www.moko.cc/channels/post/23/1.html

每页48个模特,20页。那么也才960人啊,完全覆盖不到尽可能多的用户。

接着又找到

http://www.moko.cc/catalog/index.html 这个页面

确认了一下眼神,以为发现问题了,结果

哎呀,还么有权限,谁有权限,可以跟我交流一下,一时激动,差点去下载他们的APP,然后进行抓包去。

上面两条路,都不好弄,接下来继续找路子。

无意中,我看到了一丝曙光

关注名单,点进去

哈哈哈,OK了,这不就是,我要找到的东西吗?

不多说了,爬虫走起,测试一下他是否有反扒机制。

我找到了一个关注的人比较多的页面,1500多个人

http://www.moko.cc/subscribe/chenhaoalex/1.html

然后又是一波分析操作

爬虫数据存储

确定了爬虫的目标,接下来,我做了两件事情,看一下,是否对你也有帮助

  1. 确定数据存储在哪里?最后我选择了MongoDB
  2. 用正则表达式去分析网页数据

对此,我们需要安装一下MongoDB,安装的办法肯定是官网教程啦!

https://docs.mongodb.com/master/tutorial/install-mongodb-on-red-hat/

如果官方文档没有帮助你安装成功。

那么我推荐下面这篇博客

https://www.cnblogs.com/hackyo/p/7967170.html

安装MongoDB出现如下结果

恭喜你安装成功了。

接下来,你要学习的是 关于mongodb用户权限的管理

http://www.cnblogs.com/shiyiwen/p/5552750.html

mongodb索引的创建

https://blog.csdn.net/salmonellavaccine/article/details/53907535

别问为啥我不重新写一遍,懒呗~~~ 况且这些资料太多了,互联网大把大把的。

一些我经常用的mongdb的命令


链接 mongo --port <端口号>

选择数据库 use admin 

展示当前数据库  db 

当前数据库授权  db.auth("用户名","密码")

查看数据库  show dbs

查看数据库中的列名  show collections 

创建列  db.createCollection("列名")

创建索引 db.col.ensureIndex({"列名字":1},{"unique":true})

展示所有索引 db.col.getIndexes()

删除索引 db.col.dropIndex("索引名字")  

查找数据  db.列名.find()

查询数据总条数  db.列名.find().count()

上面基本是我最常用的了,我们下面实际操作一把。

用Python链接MongoDB

使用 pip3 安装pymongo库

使用pymongo模块连接mongoDB数据库

一些准备工作

  1. 创建dm数据库

    链接上mongodb 在终端使用命令 mongo --port 21111

[[email protected] ~]$ mongo --port 21111
MongoDB shell version v3.6.5
connecting to: mongodb://127.0.0.1:21111/
MongoDB server version: 3.6.5
> 

  1. 配置用户权限:接着上面输入命令 show dbs 查看权限

权限不足

  1. 创建管理用户
db.createUser({user: "userAdmin",pwd: "123456", roles: [ { role: "userAdminAnyDatabase", db: "admin" } ] } )
  1. 授权用户
db.auth("userAdmin","123456")
  1. 查看权限
> db.auth("userAdmin","123456")
1
> show dbs
admin   0.000GB
config  0.000GB
local   0.000GB
moko    0.013GB
test    0.000GB
>
  1. 接下来创建 dm数据库<在这之前还需要创建一个读写用户>
> use dm
switched to db dm
> db
dm
> db.createUser({user: "dba",pwd: "dba", roles: [ { role: "readWrite", db: "dm" } ] } )
Successfully added user: {
    "user" : "dba",
    "roles" : [
        {
            "role" : "readWrite",
            "db" : "dm"
        }
    ]
}
> 

  1. 重新授权
db.auth("dba","dba")
  1. 创建一列数据
> db.createCollection("demo")
{ "ok" : 1 }
> db.collections
dm.collections
> show collections
demo
> 

  1. Python实现插入操作
import pymongo as pm  #确保你已经安装过pymongo了

 # 获取连接
client = pm.MongoClient(‘localhost‘, 21111)  # 端口号是数值型

# 连接目标数据库
db = client.dm

# 数据库用户验证
db.authenticate("dba", "dba")
post = {
        "id": "111111",
        "level": "MVP",
        "real":1,
        "profile": ‘111‘,
        ‘thumb‘:‘2222‘,
        ‘nikename‘:‘222‘,
        ‘follows‘:20
}

db.col.insert_one(post) # 插入单个文档

# 打印集合第1条记录
print (db.col.find_one())
  1. 编译执行
[[email protected] moocspider]$ python3 mongo.py
{‘_id‘: ObjectId(‘5b15033cc3666e1e28ae5582‘), ‘id‘: ‘111111‘, ‘level‘: ‘MVP‘, ‘real‘: 1, ‘profile‘: ‘111‘, ‘thumb‘: ‘2222‘, ‘nikename‘: ‘222‘, ‘follows‘: 20}
[[email protected] moocspider]$ 



好了,我们到现在为止,实现了mongodb的插入问题。

用Python 爬取关注对象

首先,我需要创造一个不断抓取链接的类

这个类做的事情,就是分析

http://www.moko.cc/subscribe/chenhaoalex/1.html

这个页面,总共有多少页,然后生成链接

抓取页面中的总页数为77

正则表达式如下

onfocus=\"this\.blur\(\)\">(\d*?)<

在这里,由所有的分页都一样,所以,我匹配了全部的页码,然后计算了数组中的最大值

#获取页码数组
pages = re.findall(r‘onfocus=\"this\.blur\(\)\">(\d*?)<‘,content,re.S)   #获取总页数
page_size = 1
if pages:  #如果数组不为空
    page_size = int(max(pages))   #获取最大页数
                    

接下来就是我们要搞定的生产者编码阶段了,我们需要打造一个不断获取连接的爬虫

简单的说就是

我们需要一个爬虫,不断的去爬取

http://www.moko.cc/subscribe/chenhaoalex/1.html 这个页面中所有的用户,并且还要爬取到总页数。

比如查看上述页面中,我们要获取的关键点如下

通过这个页面,我们要得到,这样子的一个数组,注意下面数组中有个位置【我用爬虫爬到的】这个就是关键的地方了

all_urls = [
    "http://www.moko.cc/subscribe/chenhaoalex/1.html",
    "http://www.moko.cc/subscribe/chenhaoalex/2.html",
    "http://www.moko.cc/subscribe/chenhaoalex/3.html",
    "http://www.moko.cc/subscribe/chenhaoalex/4.html",
    ......
    "http://www.moko.cc/subscribe/dde760d5dd6a4413aacb91d1b1d76721/1.html"
    "http://www.moko.cc/subscribe/3cc82db2231a4449aaa97ed8016b917a/1.html"
    "http://www.moko.cc/subscribe/d45c1e3069c24152abdc41c1fb342b8f/1.html"
    "http://www.moko.cc/subscribe/【我用爬虫爬到的】/1.html"

    ]

引入必备模块

# -*- coding: UTF-8 -*-
import requests   #网络请求模块
import random     #随机模块
import re         #正则表达式模块
import time       #时间模块
import threading  #线程模块
import pymongo as pm   #mongodb模块

接下来,我们需要准备一个通用函数模拟UserAgent做一个简单的反爬处理

class Config():
    def getHeaders(self):
        user_agent_list = [             "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1"             "Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11",             "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1092.0 Safari/536.6",             "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1090.0 Safari/536.6",             "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/19.77.34.5 Safari/537.1",             "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5",             "Mozilla/5.0 (Windows NT 6.0) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.36 Safari/536.5",             "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",             "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",             "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3",             "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3",             "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3",             "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",             "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",             "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3",             "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.0 Safari/536.3",             "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24",             "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24"
        ]
        UserAgent=random.choice(user_agent_list)
        headers = {‘User-Agent‘: UserAgent}
        return headers

编写生产者的类和核心代码,Producer继承threading.Thread

#生产者
class Producer(threading.Thread):

    def run(self):
        print("线程启动...")
        headers = Config().getHeaders()

if __name__ == "__main__":
    p = Producer()
    p.start()

测试运行,一下,看是否可以启动

[[email protected] moocspider]$ python3 demo.py
线程启动...
{‘User-Agent‘: ‘Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24‘}
[[email protected] moocspider]$ 

如果上面的代码没有问题,接下来就是我们爬虫代码部分了,为了方便多线程之间的调用,我们还是创建一个共享变量在N个线程之间调用

# -*- coding: UTF-8 -*-
import requests
import random
import re
import time
import threading
import pymongo as pm

 # 获取连接
client = pm.MongoClient(‘localhost‘, 21111)  # 端口号是数值型

# 连接目标数据库
db = client.moko

# 数据库用户验证
db.authenticate("moko", "moko")

urls = ["http://www.moko.cc/subscribe/chenhaoalex/1.html"]
index = 0   #索引
g_lock = threading.Lock()  #初始化一个锁  

#生产者
class Producer(threading.Thread):

    def run(self):
        print("线程启动...")
        headers = Config().getHeaders()
        print(headers)
        global urls
        global index
        while True:
            g_lock.acquire()
            if len(urls)==0:
                g_lock.release()
                continue
            page_url = urls.pop()
            g_lock.release() #使用完成之后及时把锁给释放,方便其他线程使用
            response = ""
            try:
                response = requests.get(page_url,headers=headers,timeout=5)

            except Exception as http:
                print("生产者异常")
                print(http)
                continue
            content = response.text 

            rc = re.compile(r‘<a class=\"imgBorder\" href=\"\/(.*?)\" hidefocus=\"true\">‘)
            follows = rc.findall(content)
            print(follows)
            fo_url = []
            threading_links_2 = []
            for u in follows:
                this_url = "http://www.moko.cc/subscribe/%s/1.html" % u
                g_lock.acquire()
                index += 1
                g_lock.release()
                fo_url.append({"index":index,"link":this_url})
                threading_links_2.append(this_url)

            g_lock.acquire()
            urls += threading_links_2
            g_lock.release()
            print(fo_url)

            try:
                db.text.insert_many(fo_url,ordered=False )
            except:
                continue

if __name__ == "__main__":
    p = Producer()
    p.start()

上面代码除了基本操作以外,我做了一些细小的处理

现在说明如下

fo_url.append({"index":index,"link":this_url})

这部分代码,是为了消费者使用时候,方便进行查找并且删除操作而特意改造的,增加了一个字段index作为标识

第二个部分,插入数据的时候,我进行了批量的操作使用的是insert_many函数,并且关键的地方,我增加了一个ordered=False的操作,这个地方大家可以自行研究一下,我的目的是去掉重复数据,默认情况下insert_many函数如果碰到数据重复,并且在mongodb中创建了索引==创建索引的办法,大家自行翻阅文章上面==,那么是无法插入的,但是这样子会插入一部分,只把重复的地方略过,非常方便。

关于pymongo的使用,大家可以参考官网手册

这个是 pymongo的官方教程

http://api.mongodb.com/python/current/api/pymongo/collection.html?highlight=insert_many#pymongo.collection.Collection.insert_many

MongoDB的手册大家也可以参考

https://docs.mongodb.com/manual/reference/method/db.collection.insertMany/

 db.text.insert_many(fo_url,ordered=False )

我们链接上MongoDB数据库,查询一下我们刚刚插入的数据


> show collections
col
links
text
> db.text
moko.text
> db.text.find()
{ "_id" : ObjectId("5b1789e0c3666e642364a70b"), "index" : 1, "link" : "http://www.moko.cc/subscribe/dde760d5dd6a4413aacb91d1b1d76721/1.html" }
{ "_id" : ObjectId("5b1789e0c3666e642364a70c"), "index" : 2, "link" : "http://www.moko.cc/subscribe/3cc82db2231a4449aaa97ed8016b917a/1.html" }
.......
{ "_id" : ObjectId("5b1789e0c3666e642364a71e"), "index" : 20, "link" : "http://www.moko.cc/subscribe/8c1e4c738e654aad85903572f9090adb/1.html" }
Type "it" for more

其实上面代码,有一个非常严重的BUG,就是当我们实际操作的时候,发现,我们每次获取到的都是我们使用this_url = "http://www.moko.cc/subscribe/%s/1.html" % u 进行拼接的结果。

也就是说,我们获取到的永远都是第1页。这个按照我们之前设计的就不符合逻辑了,

我们还要获取到分页的内容,那么这个地方需要做一个简单的判断,就是下面的逻辑了。

==如果完整代码,大家不知道如何观看,可以直接翻阅到文章底部,有对应的github链接==

#如果是第一页,那么需要判断一下
#print(page_url)
is_home =re.search(r‘(\d*?)\.html‘,page_url).group(1)
if is_home == str(1):
    pages = re.findall(r‘onfocus=\"this\.blur\(\)\">(\d*?)<‘,content,re.S)   #获取总页数
    page_size = 1
    if pages:
        page_size = int(max(pages))   #获取最大页数
        if page_size > 1:   #如果最大页数大于1,那么获取所有的页面
            url_arr = []
            threading_links_1 = []
            for page in range(2,page_size+1):
                url =  re.sub(r‘(\d*?)\.html‘,str(page)+".html",page_url)
                threading_links_1.append(url)
                g_lock.acquire()
                index += 1
                g_lock.release()

                url_arr.append({ "index":index, "link": url})

            g_lock.acquire()
            urls += threading_links_1  #  URL数据添加
            g_lock.release()
            try:
                db.text.insert_many(url_arr,ordered=False )
            except Exception as e:
                print("数据库输入异常")
                print (e)
                continue

        else:
            pass
    else:
            pass

截止到现在为止,其实你已经实现了链接的生产者了 。

我们在MongoDB中生成了一堆链接,接下来就是使用阶段了。

使用起来也是非常简单。

我先给大家看一个比较复杂的正则表达式爬虫写的好不好,正则表达式站很重要的比例哦~

divEditOperate_(?P<ID>\d*)[\"] .*>[\s\S]*?<p class=\"state\">.*?(?P<级别>\w*P).*</span></span>(?P<是否认证><br/>)?.*?</p>[\s\S]*?<div class=\"info clearfix\">[\s\S]*?<a class=\"imgBorder\" href=\"\/(?P<主页>.*?)\" hidefocus=\"true\">[\s\S]*?<img .*?src=\"(?P<头像>.*?)\".*?alt=\".*?\" title=\"(?P<昵称>.*?)\" />[\s\S]*?<p class=\"font12 lesserColor\">(?P<地点>.*?)&nbsp.*?<span class=\"font12 mainColor\">(?P<粉丝数目>\d*?)</span>

上面这个正则表达式,就是我为

http://www.moko.cc/subscribe/chenhaoalex/1.html 

这个页面专门准备的。

这样子,我就可以直接获取到我想要的所有数据了。

消费者的代码如下

get_index = 0
#消费者类
class Consumer(threading.Thread):

    def run(self):
        headers = Config().getHeaders()

        global get_index
        while True:

            g_lock.acquire()
            get_index += 1
            g_lock.release()
            #从刚才数据存储的列里面获取一条数据,这里用到find_one_and_delete方法
            #get_index 需要声明成全局的变量
            link = db.links.find_one_and_delete({"index":get_index})
            page_url = ""
            if link:
                page_url = link["link"]
                print(page_url+">>>网页分析中...")
            else:
                continue

            response = ""
            try:
                response = requests.get(page_url,headers=headers,timeout=5)

            except Exception as http:
                print("消费者有异常")
                print(http)
                continue

            content = response.text
            rc = re.compile(r‘divEditOperate_(?P<ID>\d*)[\"] .*>[\s\S]*?<p class=\"state\">.*?(?P<级别>\w*P).*</span></span>(?P<是否认证><br/>)?.*?</p>[\s\S]*?<div class=\"info clearfix\">[\s\S]*?<a class=\"imgBorder\" href=\"\/(?P<主页>.*?)\" hidefocus=\"true\">[\s\S]*?<img .*?src=\"(?P<头像>.*?)\".*?alt=\".*?\" title=\"(?P<昵称>.*?)\" />[\s\S]*?<p class=\"font12 lesserColor\">(?P<地点>.*?)&nbsp.*?<span class=\"font12 mainColor\">(?P<粉丝数目>\d*?)</span>‘)
            user_info = rc.findall(content)
            print(">>>>>>>>>>>>>>>>>>>>")
            users = []
            for user in user_info:
                post = {
                    "id": user[0],
                    "level": user[1],
                    "real":user[2],
                    "profile": user[3],
                    ‘thumb‘:user[4],
                    ‘nikename‘:user[5],
                    ‘address‘:user[6],
                    ‘follows‘:user[7]
                }

                users.append(post)
            print(users)

            try:
                db.mkusers.insert_many(users,ordered=False )
            except Exception as e:
                print("数据库输入异常")
                print (e)
                continue

            time.sleep(1)

            print("<<<<<<<<<<<<<<<<<<<<")

当你使用python3 demo.py 编译demo之后,屏幕滚动如下结果,那么你成功了。

接下来就可以去数据库查阅数据去了。

[[email protected] moocspider]$ python3 demo.py
线程启动...
{‘User-Agent‘: ‘Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3‘}
http://www.moko.cc/subscribe/chenhaoalex/2.html>>>网页分析中...
[‘dde760d5dd6a4413aacb91d1b1d76721‘, ‘3cc82db2231a4449aaa97ed8016b917a‘, ‘a1835464ad874eec92ccbb31841a7590‘, ‘c9ba6a47a246494398d4e26c1e0b7e54‘, ‘902fe175e668417788a4fb5d4de7ab99‘, ‘dcb8f11265594f17b821a6d90caf96a7‘, ‘7ea0a96621eb4ed99c9c642936559c94‘, ‘d45c1e3069c24152abdc41c1fb342b8f‘, ‘chenyiqiu‘, ‘798522844‘, ‘MEERILLES‘, ‘ddfd9e1f7dca4cffb2430caebd2494f8‘, ‘d19cbd37c87e400e9da42e159560649b‘, ‘ac07e7fbfde14922bb1d0246b9e4374d‘, ‘05abc72ac7bb4f738f73028fed17ac23‘, ‘hanzhuoer‘, ‘e12e15aaee654b8aa9f528215bc3294c‘, ‘3b6d8dc6fd814789bd484f393b5c9fa8‘, ‘83256b93a2f94f449ab75c730cb80a7b‘, ‘8c1e4c738e654aad85903572f9090adb‘]
[{‘index‘: 77, ‘link‘: ‘http://www.moko.cc/subscribe/dde760d5dd6a4413aacb91d1b1d76721/1.html‘}, {‘index‘: 78, ‘link‘: ‘http://www.moko.cc/subscribe/3cc82db2231a4449aaa97ed8016b917a/1.html‘}, {‘index‘: 79, ‘link‘: ‘http://www.moko.cc/subscribe/a1835464ad874eec92ccbb31841a7590/1.html‘}, {‘index‘: 80, ‘link‘: ‘http://www.moko.cc/subscribe/c9ba6a47a246494398d4e26c1e0b7e54/1.html‘}, {]
>>>>>>>>>>>>>>>>>>>>
[{‘id‘: ‘3533155‘, ‘level‘: ‘MP‘, ‘real‘: ‘‘, ‘profile‘: ‘b1a7e76455cc4ca4b81ed800ab68b308‘, ‘thumb‘: ‘http://img.mb.moko.cc/2018-02-17/d7db42d4-7f34-46d2-a760-c88eb90d6e0d.jpg‘, ‘nikename‘: ‘模特九九‘, ‘address‘: ‘大连‘, ‘follows‘: ‘10‘}, {‘id‘: ‘3189865‘, ‘level‘: ‘VIP‘, ‘real‘: ‘‘, ‘profile‘: ‘cfdf1482a9034f65a60bc6a1cf8d6a02‘, ‘thumb‘: ‘http://img.mb.moko.cc/2016-09-30/98c1ddd3-f9a8-4a15-a106-5d664fa7b558.jpg‘, ‘nikename‘: ‘何应77‘, ‘address‘: ‘杭州‘, ‘follows‘: ‘219‘}, {‘id‘: ‘14886‘, ‘level‘: ‘VIP‘, ‘real‘: ‘<br/>‘, ‘profile‘: ‘cndp‘, ‘thumb‘: ‘http://img2.moko.cc/users/0/49/14886/logo/img2_des_x3_10100286.jpg‘, ‘nikename‘: ‘多拍PGirl‘, ‘address‘: ‘北京‘, ‘follows‘: ‘2331‘}, {‘id‘: ‘3539257‘, ‘level‘: ‘MP‘, ‘real‘: ‘<br/>‘, ‘profile‘: ‘605c8fb2824049aa841f21858a7fd142‘, ‘thumb‘: ‘http://img.mb.moko.cc/2018-02‘:

记得处理数据的时候去掉重复值

>show collections
col
links
mkusers
text
> db.mkusers.find()
{ "_id" : ObjectId("5b17931ec3666e6eff3953bc"), "id" : "3533155", "level" : "MP", "real" : "", "profile" : "b1a7e76455cc4ca4b81ed800ab68b308", "thumb" : "http://img.mb.moko.cc/2018-02-17/d7db42d4-7f34-46d2-a760-c88eb90d6e0d.jpg", "nikename" : "模特九九", "address" : "大连", "follows" : "10" }
{ "_id" : ObjectId("5b17931ec3666e6eff3953bd"), "id" : "3189865", "level" : "VIP", "real" : "", "profile" : "cfdf1482a9034f65a60bc6a1cf8d6a02", "thumb" : "http://img.mb.moko.cc/2016-09-30/98c1ddd3-f9a8-4a15-a106-5d664fa7b558.jpg", "nikename" : "何应77", "address" : "杭州", "follows" : "219" }
{ "_id" : ObjectId("5b17931ec3666e6eff3953be"), "id" : "14886", "level" : "VIP", "real" : "<br/>", "profile" : "cndp", "thumb" : "http://img2.moko.cc/users/0/49/14886/logo/img2_des_x3_10100286.jpg", "nikename" : "多拍PGirl", "address" : "北京", "follows" : "2331" }
{ "_

最后一步,如果你想要把效率提高,修改线程就好了

if __name__ == "__main__":

    for i in range(5):
        p = Producer()
        p.start()

    for i in range(7):
        c = Consumer()
        c.start()

经过3个小时的爬取,我获取了70000多美空的用户ID,原则上,你可以获取到所有的被关注者的,不过这些数据对我们测试来说,已经足够使用。

代码github地址: https://github.com/wangdezhen/mokospider.git

原文地址:https://www.cnblogs.com/happymeng/p/10117457.html

时间: 2024-11-06 09:48:43

Python爬虫入门教程 3-100 美空网数据爬取的相关文章

Python爬虫入门教程 15-100 石家庄政民互动数据爬取

1. 石家庄政民互动数据爬取-写在前面 今天,咱抓取一个网站,这个网站呢,涉及的内容就是 网友留言和回复,特别简单,但是网站是gov的.网址为http://www.sjz.gov.cn/col/1490066682000/index.html 首先声明,为了学习,绝无恶意抓取信息,不管你信不信,数据我没有长期存储,预计存储到重装操作系统就删除. 2. 石家庄政民互动数据爬取-网页分析 点击更多回复 ,可以查看到相应的数据. 数据量很大14万条,,数据爬完,还可以用来学习数据分析,真是nice 经

初识scrapy,美空网图片爬取实战

这俩天研究了下scrapy爬虫框架,遂准备写个爬虫练练手.平时做的较多的事情是浏览图片,对,没错,就是那种艺术照,我骄傲的认为,多看美照一定能提高审美,并且成为一个优雅的程序员.O(∩_∩)O~ 开个玩笑,那么废话不多说,切入正题吧,写一个图片爬虫. 设计思路:爬取目标为美空网模特照片,利用CrawlSpider提取每张照片的url地址,并将提取的图片url写入一个静态html文本作为存储,打开即可查看图片. 我的环境是win8.1, python2.7+Scrapy 0.24.4,如何配环境我

Python爬虫入门【2】:妹子图网站爬取

妹子图网站爬取---前言 从今天开始就要撸起袖子,直接写Python爬虫了,学习语言最好的办法就是有目的的进行,所以,接下来我将用10+篇的博客,写爬图片这一件事情.希望可以做好. 为了写好爬虫,我们需要准备一个火狐浏览器,还需要准备抓包工具,抓包工具,我使用的是CentOS自带的tcpdump,加上wireshark ,这两款软件的安装和使用,建议你还是学习一下,后面我们应该会用到. 妹子图网站爬取---网络请求模块requests 妹子图网站爬取---安装requests 打开终端:使用命令

Python爬虫入门教程:博客园首页推荐博客排行的秘密

1. 前言 虽然博客园注册已经有五年多了,但是最近才正式开始在这里写博客.(进了博客园才知道这里面个个都是人才,说话又好听,超喜欢这里...)但是由于写的内容都是软件测试相关,热度一直不是很高.看到首页的推荐博客排行时,心里痒痒的,想想看看这些大佬究竟是写了什么文章这么受欢迎,可以被推荐.所以用Python抓取了这100位推荐博客,简单分析了每个博客的文章分类,阅读排行榜,评论排行榜及推荐排行榜,最后统计汇总并生成词云.正好这也算是一篇非常好的Python爬虫入门教程了. 2. 环境准备 2.1

Java分布式爬虫Nutch教程——导入Nutch工程,执行完整爬取

Java分布式爬虫Nutch教程--导入Nutch工程,执行完整爬取 by briefcopy · Published 2016年4月25日 · Updated 2016年12月11日 在使用本教程之前,需要满足条件: 1)有一台Linux或Linux虚拟机 2)安装JDK(推荐1.7) 3)安装Apache Ant 下载Nutch源码: 推荐使用Nutch 1.9,官方下载地址:http://mirrors.hust.edu.cn/apache/nutch/1.9/apache-nutch-1

Python爬虫入门教程 4-100 美空网未登录图片爬取

简介 上一篇写的时间有点长了,接下来继续把美空网的爬虫写完,这套教程中编写的爬虫在实际的工作中可能并不能给你增加多少有价值的技术点,因为它只是一套入门的教程,老鸟你自动绕过就可以了,或者带带我也行. 爬虫分析 首先,我们已经爬取到了N多的用户个人主页,我通过链接拼接获取到了 http://www.moko.cc/post/da39db43246047c79dcaef44c201492d/list.html 在这个页面中,咱们要找几个核心的关键点,发现平面拍摄点击进入的是图片列表页面. 接下来开始

Python爬虫入门教程 33-100 电影评论数据抓取 scrapy

1. 海王评论数据爬取前分析 海王上映了,然后口碑炸了,对咱来说,多了一个可爬可分析的电影,美哉~ 摘录一个评论 零点场刚看完,温导的电影一直很不错,无论是速7,电锯惊魂还是招魂都很棒.打斗和音效方面没话说非常棒,特别震撼.总之,DC扳回一分( ̄▽ ̄).比正义联盟好的不止一点半点(我个人感觉).还有艾梅伯希尔德是真的漂亮,温导选的人都很棒.真的第一次看到这么牛逼的电影 转场特效都吊炸天 2. 海王案例开始爬取数据 数据爬取的依旧是猫眼的评论,这部分内容咱们用把牛刀,scrapy爬取,一般情况下,

Python爬虫入门教程 2-100 妹子图网站爬取

前言 从今天开始就要撸起袖子,直接写Python爬虫了,学习语言最好的办法就是有目的的进行,所以,接下来我将用10+篇的博客,写爬图片这一件事情.希望可以做好. 为了写好爬虫,我们需要准备一个火狐浏览器,还需要准备抓包工具,抓包工具,我使用的是CentOS自带的tcpdump,加上wireshark ,这两款软件的安装和使用,建议你还是学习一下,后面我们应该会用到. 网络请求模块requests Python中的大量开源的模块使得编码变的特别简单,我们写爬虫第一个要了解的模块就是requests

最详细的Python爬虫入门教程,一篇文章入门爬虫不是儿戏!

0×00 介绍 0×01 要求 0×02 你能学到什么? 0×03 知识补充 0×04 最简单的开始 0×05 更优雅的解决方案 0×06 url合法性判断 0×07 总结与预告 0×00 介绍 学习Python中有不明白推荐加入交流群 号:548377875 群里有志同道合的小伙伴,互帮互助, 群里有不错的学习教程! 爬虫技术是数据挖掘,测试技术的重要的组成部分,是搜索引擎技术的核心. 但是作为一项普通的技术,普通人同样可以用爬虫技术做很多很多的事情,比如:你想了解一下某网所有关于爬虫技术的文