我们都知道,数据结构和算法本身解决的是“快”和“省”的问题,即如何让代码运行得更快,如何让代码更省存储空间。所以,执行效率是算法一个非常重要的考量指标。那如何来衡量你编写的算法代码的执行效率呢?这里就要用到我们今天要讲的内容:时间、空间复杂度分析。其实,只要讲到数据结构与算法,就一定离不开时间、空间复杂度分析。
而且,我个人认为,复杂度分析是整个算法学习的精髓,只要掌握了它,数据结构和算法的内容基本上就掌握了一半。其实,只要讲到数据结构与算法,就一定离不开时间、空间复杂度分析。
复杂度分析实在太重要了,因此我准备用两节内容来讲。希望你学完这个内容之后,无论在任何场景下,面对任何代码的复杂度分析,你都能做到“庖丁解牛”般游刃有余。
为什么需要复杂度分析?
你可能会有些疑惑,我把代码跑一遍,通过统计、监控,就能得到算法执行的时间和占用的内存大小。为什么还要做时间、空间复杂度分析呢?这种分析方法能比我实实在在跑一遍得到的数据更准确吗?
首先,我可以肯定地说,你这种评估算法执行效率的方法是正确的。很多数据结构和算法书籍还给这种方法起了一个名字,叫事后统计法。但是,这种统计方法有非常大的局限性。
1. 测试结果非常依赖测试环境
测试环境中硬件的不同会对测试结果有很大的影响。比如,我们拿同样一段代码,分别用Intel Core i9 处理器和 Intel Core i3 处理器来运行,不用说,i9 处理器要比 i3 处理器执行的速度快很多。还有,比如原本在这台机器上 a 代码执行的速度比 b 代码要快,等我们换到另一台机器上时,可能会有截然相反的结果。
2.测试结果受数据规模的影响很大
后面我们会讲排序算法,我们先拿它举个例子。对同一个排序算法,待排序数据的有序度不一样,排序的执行时间就会有很大的差别。极端情况下,如果数据已经是有序的,那排序算法不需要做任何操作,执行时间就会非常短。除此之外,如果测试数据规模太小,测试结果可能无法真实地反应算法的性能。比如,对于小规模的数据排序,插入排序可能反倒会比快速排序要快!
所以,我们需要一个不用具体的测试数据来测试,就可以粗略地估计算法的执行效率的方法。这就是我们今天要讲的时间、空间复杂度分析方法。所以,我们需要一个不用具体的测试数据来测试,就可以粗略地估计算法的执行效率的方法。这就是我们今天要讲的时间、空间复杂度分析方法。
大 O 复杂度表示法
算法的执行效率,粗略地讲,就是算法代码执行的时间。但是,如何在不运行代码的情况下,用“肉眼”得到一段代码的执行时间呢?
这里有段非常简单的代码,求1,2,3…n+的累加和。现在,我就带你一块来估算一下这段代码的执行时间。
1 int cal(int n) { 2 int sum = 0; 3 int i = 1; 4 for (; i <= n; ++i) { 5 sum = sum + i; 6 } 7 return sum; 8 }
从+CPU+的角度来看,这段代码的每一行都执行着类似的操作:读数据-运算-写数据。尽管每行代码对应的+CPU+执行的个数、执行的时间都不一样,但是,我们这里只是粗略估计,所以可以假设每行代码执行的时间都一样,为+unit_time。在这个假设的基础之上,这段代码的总执行时间是多少呢
第2、3行代码分别需要1个unit_time的执行时间,第4、5行都运行了n遍,所以需要2n*unit_time的执行时间,所以这段代码总的执行时间就是(2n+2)*unit_time。可以看出来,所有代码的执行时间T(n)与每行代码的执行次数成正比。
原文地址:https://www.cnblogs.com/crazymagic/p/9721619.html