依赖注入[2]: 基于IoC的设计模式

正如我们在《控制反转》提到过的,很多人将IoC理解为一种“面向对象的设计模式”,实际上IoC自身不仅与面向对象没有必然的联系,它也算不上是一种设计模式。一般来讲,设计模式提供了一种解决某种具体问题的方案,但是IoC既没有一个针对性的问题领域,其自身没有提供一种可实施的解决方案,所以我更加倾向于将IoC视为一种设计原则。实际上很多我们熟悉的设计模式背后采用了IoC原则,接下来我们就来介绍几种典型的“设计模式”。

一、模板方法

提到IoC,很多人首先想到的是DI,但是在我看来与IoC思想最为接近的倒是另一种被称为“模板方法(Template  Method)”的设计模式。模板方法模式与IoC的意图可以说不谋而合,该模式主张将一个可复用的工作流程或者由多个步骤组成的算法定义成模板方法,组成这个流程或者算法的步骤实现在相应的虚方法之中,模板方法根据按照预先编排的流程去调用这些虚方法。所有这些方法均定义在同一个类中,我们可以通过派生该类并重写相应的虚方法达到对流程定制的目的。

对于《控制反转》演示的这个MVC的例子,我们可以将整个请求处理流程实现在如下一个MvcEngine类中,请求的监听与接收、目标Controller的激活与执行以及View的呈现分别定义在5个受保护的虚方法中,模板方法StartAsync根据预定义的请求处理流程先后调用这5个方法。

public class MvcEngine
{
    public async Task StartAsync(Uri address)
    {
        await ListenAsync(address);
        while (true)
        {
            var request = await ReceiveAsync();
            var controller = await CreateControllerAsync(request);
            var view = await ExecuteControllerAsync(controller);
            await RenderViewAsync(view);
        }
    }
    protected virtual Task ListenAsync(Uri address);
    protected virtual Task<Request> ReceiveAsync();
    protected virtual Task<Controller> CreateControllerAsync(Request request);
    protected virtual Task<View> ExecuteControllerAsync(Controller controller);
    protected virtual Task RenderViewAsync(View view);
}

对于具体的应用来说,如果定义在MvcEngine针对请求的处理方式完全符合它的要求,它只需要创建这个一个MvcEngine对象,然后指定一个对应的基地址调用模板方法StartAsync开启这个MVC引擎即可。如果该MVC引擎处理请求的某个环节不能满足它的要求,它可以创建MvcEngine的派生类,并重写实现该环节的相应虚方法即可。

比如说定义在某个应用程序中的Controller都是无状态的,它希望采用单例(Singleton)的方式重用已经激活的Controller以提高性能,那么它就可以按照如下的方式创建一个自定义的FoobarMvcEngine并按照自己的方式重写

public class FoobarMvcEngine : MvcEngine
{
    protected override Task<View> CreateControllerAsync (Request request)
    {
        <<省略实现>>
    }
}

二、工厂方法

对于一个复杂的流程来说,我们倾向于将组成该流程的各个环节实现在相对独立的组件之中,那么针对流程的定制就可以通过提供定制组件的方式来实现。我们知道23种设计模式之中有一种重要的类型,那就是“创建型模式”,比如常用的“工厂方法”和“抽象工厂”,IoC所体现的针对流程的共享与定制可以通过它们来完成。

所谓的工厂方法,说白了就是在某个类中定义用于提供依赖对象的方法,这个方法可以是一个单纯的虚方法,也可以是具有默认实现的虚方法,至于方法声明的返回类型,可以是一个接口或者抽象类,也可以是未被封闭(Sealed)的具体类型。作为它的派生类型,它可以实现或者重写工厂方法以提供所需的具体对象。

同样以我们的MVC框架为例,我们让独立的组件来完成组成整个请求处理流程的几个核心环节。具体来说,我们针对这些核心组件定义了如下这几个对应的接口。IWebLister接口用来监听、接收和响应请求(针对请求的响应由ReceiveAsync方法返回的HttpContext对象来完成,后者表示针对当前请求的上下文),IControllerActivator接口用于根据当前请求激活目标Controller对象,已经在后者执行完成后做一些释放回收工作。至于IControllerExecutorIViewRender接口则分别用来完成针对Controller的执行和针对View的呈现。

public interface IWebLister
{
    Task ListenAsync(Uri address);
    Task<HttpContext> ReceiveAsync();
}

public interface IControllerActivator
{
    Task<Controller> CreateControllerAsync(HttpContext httpContext);
    Task ReleaseAsync(Controller controller);
}

public interface IControllerExecutor
{
    Task<View> ExecuteAsync(Controller controller, HttpContext httpContext);
}

public interface IViewRender
{
    Task RendAsync(View view, HttpContext httpContext);
}

 

我们在作为MVC引擎的MvcEngine类中定义了四个工厂方法(GetWebListener、GetControllerActivator、GetControllerExecutor和GetViewRenderer)来提供上述这4种组件。这四个工厂方法均为具有默认实现的虚方法,我们可以利用它们提供默认的组件。在用于启动引擎的StartAsync方法中,我们利用这些工厂方法提供的对象来具体完成请求处理流程的各个核心环节。

public class MvcEngine
{
    public async Task StartAsync(Uri address)
    {
        var listener = GetWebLister();
        var activator = GetControllerActivator();
        var executor = GetControllerExecutor();
        var render = GetViewRender();
        await listener.ListenAsync(address);
        while (true)
        {
            var httpContext = await listener.ReceiveAsync();
            var controller = await activator.CreateControllerAsync(httpContext);
            try
            {
                var view = await executor.ExecuteAsync(controller, httpContext);
                await render.RendAsync(view, httpContext);
            }
            finally

            {
                await activator.ReleaseAsync(controller);
            }
        }
    }
    protected virtual IWebLister GetWebLister();
    protected virtual IControllerActivator GetControllerActivator();
    protected virtual IControllerExecutor GetControllerExecutor();
    protected virtual IViewRender GetViewRender();
}

 

对于具体的应用程序来说,如果需要对请求处理的某个环节进行定制,它需要将定制的操作实现在对应接口的实现类中。在MvcEngine的派生类中,我们需要重写对应的工厂方法来提供被定制的对象。 比如上面提及的以单例模式提供目标Controller对象的实现就定义在SingletonControllerActivator类中,我们在派生于MvcEngine的FoobarMvcEngine类中重写了工厂方法GetControllerActivator使其返回一个SingletonControllerActivator对象。

public class SingletonControllerActivator : IControllerActivator
{
    public Task<Controller> CreateControllerAsync(HttpContext httpContext)
    {
        <<省略实现>>
    }
    public Task ReleaseAsync(Controller controller) => Task.CompletedTask;
}

public class FoobarMvcEngine : MvcEngine
{
    protected override ControllerActivator GetControllerActivator() => new SingletonControllerActivator();
}

三、抽象工厂

虽然工厂方法和抽象工厂均提供了一个“生产”对象实例的工厂,但是两者在设计上却有本质的不同。工厂方法利用定义在某个类型的抽象方法或者虚方法实现了针对单一对象提供方式的抽象,而抽象工厂则利用一个独立的接口或者抽象类来提供一组相关的对象。

具体来说,我们需要定义一个独立的工厂接口或者抽象工厂类,并在其中定义多个的工厂方法来提供“同一系列”的多个相关对象。如果希望抽象工厂具有一组默认的“产出”,我们也可以将一个未被封闭的具体类作为抽象工厂,以虚方法形式定义的工厂方法将默认的对象作为返回值。我们根据实际的需要通过实现工厂接口或者继承抽象工厂类(不一定是抽象类)定义具体工厂类来提供一组定制的系列对象。

现在我们采用抽象工厂模式来改造我们的MVC框架。如下面的代码片段所示,我们定义了一个名为IMvcEngineFactory的接口作为抽象工厂,定义在其中定义了四个方法来提供请求监听和处理过程使用到的4种核心对象。如果MVC提供了针对这四种核心组件的默认实现,我们可以按照如下的方式为这个抽象工厂提供一个默认实现(MvcEngineFactory)。

public interface IMvcEngineFactory
{
    IWebLister GetWebLister();
    IControllerActivator GetControllerActivator();
    IControllerExecutor GetControllerExecutor();
    IViewRender GetViewRender();
}

public class MvcEngineFactory: IMvcEngineFactory
{
    IWebLister GetWebLister();
    IControllerActivator GetControllerActivator();
    IControllerExecutor GetControllerExecutor();
    IViewRender GetViewRender();
}

 

现在我们采用抽象工厂模式来改造我们的MVC框架。我们在创建MvcEngine对象可以提供一个具体的IMvcEngineFactory对象,如果没有显式指定,MvcEngine会使用默认的EngineFactory对象。在用于启动引擎的StartAsync方法中,MvcEngine利用IMvcEngineFactory来获取相应的对象协作完整对请求的处理流程。

public class MvcEngine
{
    public IMvcEngineFactory EngineFactory { get; }
    public MvcEngine(IMvcEngineFactory engineFactory = null)
    => EngineFactory = engineFactory??new MvcEngineFactory();

    public async Task StartAsync(Uri address)
    {
        var listener = EngineFactory.GetWebLister();
        var activator = EngineFactory.GetControllerActivator();
        var executor = EngineFactory.GetControllerExecutor();
        var render = EngineFactory.GetViewRender();
        await listener.ListenAsync(address);
        while (true)
        {
            var httpContext = await listener.ReceiveAsync();
            var controller = await activator.CreateControllerAsync(httpContext);
            try
            {
                var view = await executor.ExecuteAsync(controller, httpContext);
                await render.RendAsync(view, httpContext);
            }
            finally
            {
                await activator.ReleaseAsync(controller);
            }
        }
    }

}

 

如果具体的应用程序需要采用上面定义的SingletonControllerActivator以单例的模式来激活目标Controller,我们可以按照如下的方式定义一个具体的工厂类FoobarEngineFactory。最终的应用程序将这么一个FoobarEngineFactory对象作为MvcEngine的EngineFactory。

public class FoobarEngineFactory : EngineFactory
{
    public override ControllerActivator GetControllerActivator()
    {
        return new SingletonControllerActivator();
    }
}

public class App
{
    static void Main(string[] args)
    {
        Uri address = new Uri("http://0.0.0.0:8080/mvcapp");
        MvcEngine engine     = new MvcEngine(new FoobarEngineFactory());
        engine.Start(address);
    }
}

 

除了上面介绍这三种典型的设计,还有很多其他的设计模式,比如策略模式、观察者模式等等,它们无一不是采用IoC的设计原则。Martin Fowler在《Inversion of Control 》一文中正是通过观察者模式来介绍IoC的。我们将在下一篇中对依赖注入模式进行深入讲解。

依赖注入[1]: 控制反转
依赖注入[2]: 基于IoC的设计模式
依赖注入[3]: 依赖注入模式
依赖注入[4]: 创建一个简易版的DI框架[上篇]
依赖注入[5]: 创建一个简易版的DI框架[下篇]
依赖注入[6]: .NET Core DI框架[编程体验]
依赖注入[7]: .NET Core DI框架[服务注册]
依赖注入[8]: .NET Core DI框架[服务消费]

原文地址:https://www.cnblogs.com/linybo/p/10053131.html

时间: 2024-10-11 17:50:34

依赖注入[2]: 基于IoC的设计模式的相关文章

C#依赖注入控制反转IOC实现详解

原文:C#依赖注入控制反转IOC实现详解 IOC的基本概念是:不创建对象,但是描述创建它们的方式.在代码中不直接与对象和服务连接,但在配置文件中描述哪一个组件需要哪一项服务.容器负责将这些联系在一起. 举个例子,组件A中有类ClassA,组件B中有接口IB和其对应的实现类B1和B2. 那么,现在ClassA需要利用IB接口来做一些事情,例如: public class ClassA { public void DoSomething() { IB b = ??? b.DoWork(); }} 现

基于.NET平台的分层架构实战(六)——依赖注入机制及IoC的设计与实现[转]

原文:http://www.cnblogs.com/leoo2sk/archive/2008/06/19/1225223.html 我们设计的分层架构,层与层之间应该是松散耦合的.因为是单向单一调用,所以,这里的“松散耦合”实际是指上层类不能具体依赖于下层类,而应该 依赖于下层提供的一个接口.这样,上层类不能直接实例化下层中的类,而只持有接口,至于接口所指变量最终究竟是哪一个类,则由依赖注入机制决定. 之所以这样做,是为了实现层与层之间的“可替换”式设计,例如,现在需要换一种方式实现数据访问层,

依赖注入[4]: 创建一个简易版的DI框架[上篇]

本系列文章旨在剖析.NET Core的依赖注入框架的实现原理,到目前为止我们通过三篇文章(<控制反转>.<基于IoC的设计模式>和< 依赖注入模式>)从纯理论的角度对依赖注入进行了深入论述,为了让读者朋友能够更好地理解.NET Core的依赖注入框架的设计思想和实现原理,我们创建了一个简易版本的DI框架,也就是我们在前面文章中多次提及的Cat.我们会上下两篇来介绍这个被称为为Cat的DI框架,上篇介绍编程模型,下篇关注设计实现.[源代码从这里下载] 目录一.DI容器的层

依赖注入[5]: 创建一个简易版的DI框架[下篇]

为了让读者朋友们能够对.NET Core DI框架的实现原理具有一个深刻而认识,我们采用与之类似的设计构架了一个名为Cat的DI框架.在<依赖注入[4]: 创建一个简易版的DI框架[上篇]>中我们介绍了Cat的基本编程模式,接下来我们就来聊聊Cat的设计和实现. 目录一.服务注册:ServiceRegistry 二.DI容器:Cat 三.扩展方法 一.服务注册:ServiceRegistry 由于作为DI容器的Cat对象总是利用预先添加到服务注册来提供对应的服务实例,所以服务注册至关重要.如下

编码最佳实践——依赖注入原则

我们在这个系列的前四篇文章中分别介绍了SOLID原则中的前四个原则,今天来介绍最后一个原则--依赖注入原则.依赖注入(DI)是一个很简单的概念,实现起来也很简单.但是简单却掩盖不了它的重要性,如果没有依赖注入,前面的介绍的SOLID技术原则都不可能实际应用. 控制反转(IoC) 人们在谈论依赖注入的时候,经常也会谈到另一个概念--控制反转(IoC).按照大内老A的解释:"IoC主要体现了这样一种设计思想:通过将一组通用流程的控制权从应用转移到框架中以实现对流程的复用,并按照"好莱坞法则

依赖注入 ---- 系列文章

依赖注入[1]: 控制反转依赖注入[2]: 基于IoC的设计模式依赖注入[3]: 依赖注入模式依赖注入[4]: 创建一个简易版的DI框架[上篇]依赖注入[5]: 创建一个简易版的DI框架[下篇]依赖注入[6]: .NET Core DI框架[编程体验]依赖注入[7]: .NET Core DI框架[服务注册]依赖注入[8]: .NET Core DI框架[服务消费] 出处:https://www.cnblogs.com/artech/category/219608.html 原文地址:https

基于DDD的现代ASP.NET开发框架--ABP系列之6、ABP依赖注入

点这里进入ABP系列文章总目录 基于DDD的现代ASP.NET开发框架--ABP系列之6.ABP依赖注入 ABP是“ASP.NET Boilerplate Project (ASP.NET样板项目)”的简称. ABP的官方网站:http://www.aspnetboilerplate.com ABP在Github上的开源项目:https://github.com/aspnetboilerplate 本文由 上海-半冷 提供翻译 什么是依赖注入 如果你已经知道依赖注入的概念,构造函数和属性注入模式

关于Spring IOC (依赖注入)你需要知道的一切

[版权申明]未经博主同意,不允许转载!(请尊重原创,博主保留追究权) http://blog.csdn.net/javazejian/article/details/54561302 出自[zejian的博客] <Spring入门经典>这本书无论对于初学者或者有经验的工程师还是很值一看的,最近花了点时间回顾了Spring的内容,在此顺带记录一下,本篇主要与spring IOC相关 ,这篇博文适合初学者也适合spring有过开发经验的工程师,前者可用于全面了解Spring IOC的知识点,后者且

在net Core3.1上基于winform实现依赖注入实例

目录 在net Core3.1上基于winform实现依赖注入实例 1.背景 2.依赖注入 2.1依赖注入是什么? 2.1依赖注入的目的 2.2依赖注入带来的好处 2.2.1生命周期的控制 2.2.2 实现了展现层(调用者)与服务类之间的解耦 2.2.3 开发者不用再去考虑依赖之间的关系 2.3 依赖注入使用的设计模式 2.3.1 代理模式 2.3.2 工厂模式 3.在Net Core 3.1上基于winform实现依赖注入 3.1 Net Core 3.1中对winform的支持. 3.2 w