遗传算法优化BP神经网络——非线性函数拟合

遗传算法基本的操作分为:

1.选择操作

2.交叉操作

3.变异操作

遗传算法的基本要素包括染色体编码方法、适应度函数、遗传操作和运行参数。

遗传算法优化BP神经网络算法流程如图3-4所示:

时间: 2024-08-08 13:44:09

遗传算法优化BP神经网络——非线性函数拟合的相关文章

BP神经网络基本原理

2.1 BP神经网络基本原理 BP网络模型处理信息的基本原理是:输入信号Xi通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Yk,网络训练的每一个样本包含输入向量X和期望输出量t,网络输出值Y与期望输出值t之间的偏差,通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度Tjk以及阈值,使误差沿梯度方向下降,经过重复学习训练,确定与最小误差相相应的网络參数(权值和阈值),训练即告停止.此时经过训练的神经网络即能对相似样本的输入信息,自行处理输出误差最小

tensorflow神经网络拟合非线性函数

本实验通过建立一个含有两个隐含层的BP神经网络,拟合具有二次函数非线性关系的方程,并通过可视化展现学习到的拟合曲线,同时随机给定输入值,输出预测值,最后给出一些关键的提示. 源代码如下: # -*- coding: utf-8 -*- import tensorflow as tf import numpy as np import matplotlib.pyplot as plt plotdata = { "batchsize":[], "loss":[] } d

遗传算法的C语言实现(一):以非线性函数求极值为例

以前搞数学建模的时候,研究过(其实也不算是研究,只是大概了解)一些人工智能算法,比如前面已经说过的粒子群算法(PSO),还有著名的遗传算法(GA),模拟退火算法(SA),蚁群算法(ACA)等.当时懂得非常浅,只会copy别人的代码(一般是MATLAB),改一改值和参数,东拼西凑就拿过来用了,根本没有搞懂的其内在的原理到底是什么.这一段时间,我又重新翻了一下当时买的那本<MATLAB智能算法30个案例分析>,重读一遍,发现这本书讲的还是非常不错的,不仅有现成算法的MATLAB实现,而且把每一种算

Matlab的BP神经网络工具箱及其在函数逼近中的应用

1.神经网络工具箱概述 Matlab神经网络工具箱几乎包含了现有神经网络的最新成果,神经网络工具箱模型包括感知器.线性网络.BP网络.径向基函数网络.竞争型神经网络.自组织网络和学习向量量化网络.反馈网络.本文只介绍BP神经网络工具箱. 2.BP神经网络工具箱介绍 BP神经网络学习规则是不断地调整神经网络的权值和偏值,使得网络输出的均方误差和最小.下面是关于一些BP神经网络的创建和训练的名称: (1)newff:创建一前馈BP网络(隐含层只有一层) (2)newcf:创建一多层前馈BP网络(隐含

最小二乘法拟合非线性函数及其Matlab/Excel 实现(转)

1.最小二乘原理 Matlab直接实现最小二乘法的示例: close x = 1:1:100; a = -1.5; b = -10; y = a*log(x)+b; yrand = y + 0.5*rand(1,size(y,2)); %%最小二乘拟合 xf=log(x); yf=yrand; xfa = [ones(1,size(xf,2));xf] w = inv(xfa*xfa')*xfa*yf';%直接拟合得到的结果 参考资料: 1.http://blog.csdn.net/lotus_

Matlab 最小二乘法拟合非线性函数

1.最小二乘原理 参考资料: 1.http://blog.csdn.net/lotus___/article/details/20546259 2.http://blog.sina.com.cn/s/blog_5404ea4f0101afth.html 2.matlab实现最小二乘法 利用matlab的最小二乘拟合函数对非线性函数进行拟合,具体地拟合的函数: [q r] = lsqcurvefit(fun, q_0, xdata, ydata);输入参数:fun:需要拟合的函数,假定有n个需要拟

非线性函数的最小二乘拟合——兼论Jupyter notebook中使用公式 [原创]

突然有个想法,利用机器学习的基本方法——线性回归方法,来学习一阶RC电路的阶跃响应,从而得到RC电路的结构特征——时间常数τ(即R*C).回答无疑是肯定的,但问题是怎样通过最小二乘法.正规方程,以更多的采样点数来降低信号采集噪声对τ估计值的影响.另外,由于最近在捣鼓Jupyter和numpy这些东西,正好尝试不用matlab而用Jupyter试试看.结果是意外的好用,尤其是在Jupyter脚本中插入LaTeX格式的公式的功能,真是太方便了!尝试了直接把纸上手写的公式转换到Jupyter脚本中的常

NeuralFinder:集成人工生命和遗传算法自动发现神经网络最优结构

/* 版权声明:可以任意转载,转载时请标明文章原始出处和作者信息 .*/ 张俊林 黄通文 马柏樟  薛会萍                一.为什么要做神经网络结构自动发现 从16年年中开始,我们开始思考最优的深度神经网络结构自动发现的问题,并在业余时间开始逐步做些探索性的实验.当时的出发点其实很简单:对于解决某个机器学习任务,目前的常规做法是通过算法研发人员分析问题特性,并不断设计修改试探深度神经网络的结构,找到最适合解决手头问题的网络结构,然后通过不断调参来获得解决问题的最优网络结构及其对应

BP神经网络设计常用的基本方法和实用技术

尽管神经网络的研究和应用已经取得巨大成功,但在网络的开发设计方面至今仍没有一套完善的理论做指导,应用中采取的主要设计方法是,在充分了解待解决问题的基础上将经验与试探相结合,通过多次改进性试验,最终选出一个较好的设计方案.下面是在开发神经网络中常用的基本方法和实用技术. (1)  网络信息容量与训练样本数 多层神经网络的分类能力与网络信息容量相关,如果网络的权值和阈值总数nw表征网络信息容量,研究表明,训练样本数N与给定的训练误差ε之间应满足以下匹配关系: N = nw / ε. 上式表明网络的信