deeplearning 源码收集

  1. Theano – CPU/GPU symbolic expression compiler in python (from MILA lab at University of Montreal)
  2. Torch – provides a Matlab-like environment for state-of-the-art machine learning algorithms in lua (from Ronan Collobert, Clement Farabet and Koray Kavukcuoglu)
  3. Pylearn2 - Pylearn2 is a library designed to make machine learning research easy.
  4. Blocks- A Theano framework for training neural networks
  5. Tensorflow - TensorFlow™ is an open source software library for numerical computation using data flow graphs.
  6. MXNet - MXNet is a deep learning framework designed for both efficiency and flexibility.
  7. Caffe -Caffe is a deep learning framework made with expression, speed, and modularity in mind.Caffe is a deep learning framework made with expression, speed, and modularity in mind.
  8. Lasagne- Lasagne is a lightweight library to build and train neural networks in Theano.
  9. Keras- A theano based deep learning library.
  10. Deep Learning Tutorials – examples of how to do Deep Learning with Theano (from LISA lab at University of Montreal)
  11. DeepLearnToolbox – A Matlab toolbox for Deep Learning (from Rasmus Berg Palm)
  12. Cuda-Convnet – A fast C++/CUDA implementation of convolutional (or more generally, feed-forward) neural networks. It can model arbitrary layer connectivity and network depth. Any directed acyclic graph of layers will do. Training is done using the back-propagation algorithm.
  13. Deep Belief Networks. Matlab code for learning Deep Belief Networks (from Ruslan Salakhutdinov).
  14. RNNLM- Tomas Mikolov’s Recurrent Neural Network based Language models Toolkit.
  15. RNNLIB-RNNLIB is a recurrent neural network library for sequence learning problems. Applicable to most types of spatiotemporal data, it has proven particularly effective for speech and handwriting recognition.
  16. matrbm. Simplified version of Ruslan Salakhutdinov’s code, by Andrej Karpathy (Matlab).
  17. deeplearning4j- Deeplearning4J is an Apache 2.0-licensed, open-source, distributed neural net library written in Java and Scala.
  18. Estimating Partition Functions of RBM’s. Matlab code for estimating partition functions of Restricted Boltzmann Machines using Annealed Importance Sampling (from Ruslan Salakhutdinov).
  19. Learning Deep Boltzmann MachinesMatlab code for training and fine-tuning Deep Boltzmann Machines (from Ruslan Salakhutdinov).
  20. The LUSH programming language and development environment, which is used @ NYU for deep convolutional networks
  21. Eblearn.lsh is a LUSH-based machine learning library for doing Energy-Based Learning. It includes code for “Predictive Sparse Decomposition” and other sparse auto-encoder methods for unsupervised learning. Koray Kavukcuoglu provides Eblearn code for several deep learning papers on this page.
  22. deepmat- Deepmat, Matlab based deep learning algorithms.
  23. MShadow - MShadow is a lightweight CPU/GPU Matrix/Tensor Template Library in C++/CUDA. The goal of mshadow is to support efficient, device invariant and simple tensor library for machine learning project that aims for both simplicity and performance. Supports CPU/GPU/Multi-GPU and distributed system.
  24. CXXNET - CXXNET is fast, concise, distributed deep learning framework based on MShadow. It is a lightweight and easy extensible C++/CUDA neural network toolkit with friendly Python/Matlab interface for training and prediction.
  25. Nengo-Nengo is a graphical and scripting based software package for simulating large-scale neural systems.
  26. Eblearn is a C++ machine learning library with a BSD license for energy-based learning, convolutional networks, vision/recognition applications, etc. EBLearn is primarily maintained by Pierre Sermanet at NYU.
  27. cudamat is a GPU-based matrix library for Python. Example code for training Neural Networks and Restricted Boltzmann Machines is included.
  28. Gnumpy is a Python module that interfaces in a way almost identical to numpy, but does its computations on your computer’s GPU. It runs on top of cudamat.
  29. The CUV Library (github link) is a C++ framework with python bindings for easy use of Nvidia CUDA functions on matrices. It contains an RBM implementation, as well as annealed importance sampling code and code to calculate the partition function exactly (from AIS labat University of Bonn).
  30. 3-way factored RBM and mcRBM is python code calling CUDAMat to train models of natural images (from Marc’Aurelio Ranzato).
  31. Matlab code for training conditional RBMs/DBNs and factored conditional RBMs (from Graham Taylor).
  32. mPoT is python code using CUDAMat and gnumpy to train models of natural images (from Marc’Aurelio Ranzato).
  33. neuralnetworks is a java based gpu library for deep learning algorithms.
  34. ConvNet is a matlab based convolutional neural network toolbox.

Theano

http://deeplearning.net/software/theano/

code from: http://deeplearning.net/

Deep Learning Tutorial notes and code

https://github.com/lisa-lab/DeepLearningTutorials

code from: lisa-lab

A Matlab toolbox for Deep Learning

https://github.com/rasmusbergpalm/DeepLearnToolbox

code from: RasmusBerg Palm

deepmat

Matlab Code for Restricted/Deep BoltzmannMachines and Autoencoder

https://github.com/kyunghyuncho/deepmat

code from: KyungHyun Cho http://users.ics.aalto.fi/kcho/

Training a deep autoencoder or a classifieron MNIST digits

http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html

code from: Ruslan Salakhutdinov and GeoffHinton

CNN - Convolutional neural network class

http://www.mathworks.cn/matlabcentral/fileexchange/24291

Code from: matlab

Neural Network for Recognition ofHandwritten Digits (CNN)

http://www.codeproject.com/Articles/16650/Neural-Network-for-Recognition-of-Handwritten-Digi

cuda-convnet

A fast C++/CUDA implementation ofconvolutional neural networks

http://code.google.com/p/cuda-convnet/

matrbm

a small library that can train RestrictedBoltzmann Machines, and also Deep Belief Networks of stacked RBM‘s.

http://code.google.com/p/matrbm/

code from: Andrej Karpathy

Exercise  from UFLDL Tutorial:

http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial

and tornadomeet’s bolg: http://www.cnblogs.com/tornadomeet/tag/Deep%20Learning/

and https://github.com/dkyang/UFLDL-Tutorial-Exercise

Conditional Restricted Boltzmann Machines

http://www.cs.nyu.edu/~gwtaylor/publications/nips2006mhmublv/code.html

from Graham Taylor http://www.cs.nyu.edu/~gwtaylor/

Factored Conditional Restricted BoltzmannMachines

http://www.cs.nyu.edu/~gwtaylor/publications/icml2009/code/index.html

from Graham Taylor http://www.cs.nyu.edu/~gwtaylor/

Marginalized Stacked Denoising Autoencodersfor Domain Adaptation

http://www1.cse.wustl.edu/~mchen/code/mSDA.tar

code from: http://www.cse.wustl.edu/~kilian/code/code.html

Tiled Convolutional Neural Networks

http://cs.stanford.edu/~quocle/TCNNweb/pretraining.tar.gz

http://cs.stanford.edu/~pangwei/projects.html

tiny-cnn:

A C++11 implementation of convolutionalneural networks

https://github.com/nyanp/tiny-cnn

myCNN

https://github.com/aurofable/18551_Project/tree/master/server/2009-09-30-14-33-myCNN-0.07

Adaptive Deconvolutional Network Toolbox

http://www.matthewzeiler.com/software/DeconvNetToolbox2/DeconvNetToolbox.zip

http://www.matthewzeiler.com/

Deep Learning手写字符识别C++代码

http://download.csdn.net/detail/lucky_greenegg/5413211

from: http://blog.csdn.net/lucky_greenegg/article/details/8949578

convolutionalRBM.m

A MATLAB / MEX / CUDA-MEX implementation ofConvolutional Restricted Boltzmann Machines.

https://github.com/qipeng/convolutionalRBM.m

from: http://qipeng.me/software/convolutional-rbm.html

rbm-mnist

C++ 11 implementation of Geoff Hinton‘sDeep Learning matlab code

https://github.com/jdeng/rbm-mnist

Learning Deep Boltzmann Machines

http://web.mit.edu/~rsalakhu/www/code_DBM/code_DBM.tar

http://web.mit.edu/~rsalakhu/www/DBM.html

Code provided by Ruslan Salakhutdinov

Efficient sparse coding algorithms

http://web.eecs.umich.edu/~honglak/softwares/fast_sc.tgz

http://web.eecs.umich.edu/~honglak/softwares/nips06-sparsecoding.htm

Linear Spatial Pyramid Matching UsingSparse Coding for Image Classification

http://www.ifp.illinois.edu/~jyang29/codes/CVPR09-ScSPM.rar

http://www.ifp.illinois.edu/~jyang29/ScSPM.htm

SPAMS

(SPArse Modeling Software) is anoptimization toolbox for solving various sparse estimation problems.

http://spams-devel.gforge.inria.fr/

sparsenet

Sparse coding simulation software

http://redwood.berkeley.edu/bruno/sparsenet/

fast dropout training

https://github.com/sidaw/fastdropout

http://nlp.stanford.edu/~sidaw/home/start

Deep Learning of Invariant Features viaSimulated Fixations in Video

http://ai.stanford.edu/~wzou/deepslow_release.tar.gz

http://ai.stanford.edu/~wzou/

Sparse filtering

http://cs.stanford.edu/~jngiam/papers/NgiamKohChenBhaskarNg2011_Supplementary.pdf

k-means

http://www.stanford.edu/~acoates/papers/kmeans_demo.tgz

others:

http://deeplearning.net/software_links/

时间: 2024-10-13 20:16:21

deeplearning 源码收集的相关文章

js源码收集

(function() { var doc = document, ua = navigator.userAgent.toLowerCase(), check = function(r) { return r.test(ua); }, isOpera = check(/opera/), isChrome = check(/chrome/), isWebKit = check(/webkit/), isSafari = !isChrome && check(/safari/), isSafa

Flume NG源码分析(五)使用ThriftSource通过RPC方式收集日志

上一篇说了利用ExecSource从本地日志文件异步的收集日志,这篇说说采用RPC方式同步收集日志的方式.笔者对Thrift比较熟悉,所以用ThriftSource来介绍RPC的日志收集方式. 整体的结构图如下: 1. ThriftSource包含了一个Thrift Server,以及一个Thrift Service服务的实现.这里的Thrift Service是由ThriftSourceProtocol定义 2. 应用程序调用Thrift Service的客户端,以RPC的方式将日志发送到Th

自己收集的十几个cocos2d-x的游戏源码

====================问题描述==================== 自己收集的十几个cocos2d-x的游戏源码,想要的留下邮箱,每天晚上发送! ====================解决方案1==================== 向楼主学习,谢谢,[email protected] ====================解决方案2==================== 楼主好人 [email protected] ====================解决方案

vue源码分析:响应式之依赖收集

今天记录下vue源码的响应式的源码学习,第一步,我们想下,为什么为们写一个data.然后里边的数据变化就能映射到dom的变化上.这里用到了Object.defineProperty(obj,key, {}),如果你还不了解建议去jsmdn上仔细了解下,这个函数的目的就是检测你得赋值和取值的过程用来定义自己的行为,比如obj[key]会拿到配置里边的get函数定义,obj[key] = 'xxx'会调用配置中的set.那么vue也是一样的,在get中做了依赖收集(也就是说哪些dom用到了我定义的这

webpack源码-依赖收集

webpack源码-依赖收集 version:3.12.0 程序主要流程: 触发make钩子 Compilation.js 执行EntryOptionPlugin 中注册的make钩子 执行compilation.addEntry 执行compilation._addModuleChain Compilation.js 执行moduleFactory.create(this.semaphore.avaiable 初始化为100) Compilation.js 执行this.buildModule

2020了你还不会Java8新特性?(五)收集器比较器用法详解及源码剖析

收集器用法详解与多级分组和分区 为什么在collectors类中定义一个静态内部类? static class CollectorImpl<T, A, R> implements Collector<T, A, R> 设计上,本身就是一个辅助类,是一个工厂.作用是给开发者提供常见的收集器实现.提供的方法都是静态方法,可以直接调用. 函数式编程最大的特点:表示做什么,而不是如何做.开发者更注重如做什么,底层实现如何做. /** * Implementations of {@link

收集10款不同的web前端特效的源码预览

1.可以向两边滑动的选项卡菜单 今天制作了一款选项卡菜单,其实本质上和普通的选项卡没什么区别,对于菜单项有hover效果,有选中效果,所增加的就是,菜单项可以有无数个,当总菜单项的宽度之和超出选项卡的固定宽度时,会出现向右移动按钮,这时,多出的菜单项会被隐藏掉.然后,可以点击移动按钮来移动菜单项,这样隐藏的菜单项就出来了,并且菜单项可以无数多个,自由增加. 在线演示 源码下载 2.CSS文字环绕图片 文字环绕是Microsoft Office Word软件的一种排版方式,主要用于设置Word文档

MyBatis架构与源码分析&lt;资料收集&gt;

1.架构与源码分析 :https://www.cnblogs.com/luoxn28/p/6417892.html .https://www.cnblogs.com/wangdaijun/p/5296830.html 2.执行器篇:https://blog.csdn.net/qingtian211/article/details/81838042 3.插件篇:https://www.cnblogs.com/xrq730/p/6984982.html 4.缓存篇:https://www.cnblo

【转】近200篇机器学习&amp;深度学习资料分享(含各种文档,视频,源码等)

编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.而且原文也会不定期的更新,望看到文章的朋友能够学到更多. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室 Ju