[ACM] POJ 2689 Prime Distance (筛选范围大素数)

Prime Distance

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 12811   Accepted: 3420

Description

The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors
(it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there
are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers.

Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair.
You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

Input

Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

Output

For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

Sample Input

2 17
14 17

Sample Output

2,3 are closest, 7,11 are most distant.
There are no adjacent primes.

Source

Waterloo local 1998.10.17

解题思路:

给出一个区间[L,R], 范围为1<=L< R<=2147483647,区间长度长度不超过1000000

求距离近期和最远的两个素数(也就是相邻的差最小和最大的素数)

筛两次,第一次筛出1到1000000的素数,由于1000000^2已经超出int范围,这种素数足够了。

函数getPrim();   prime[ ] 存第一次筛出的素数,总个数为prime[0]

第二次利用已经筛出的素数去筛L,R之间的素数

函数getPrime2();     isprime[] 推断该数是否为素数 prime2[ ]筛出的素数有哪些,一共同拥有prime2[0]个

代码:

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <cmath>
#include <algorithm>
using namespace std;

const int maxn=1e6;
int prime[maxn+10];

void getPrime()
{
    memset(prime,0,sizeof(prime));//一開始prime都设为0代表都是素数(反向思考)
    for(int i=2;i<=maxn;i++)
    {
        if(!prime[i])
            prime[++prime[0]]=i;
        for(int j=1;j<=prime[0]&&prime[j]<=maxn/i;j++)
        {
            prime[prime[j]*i]=1;//prime[k]=1;k不是素数
            if(i%prime[j]==0)
                break;
        }
    }
}

bool isprime[maxn+10];
int prime2[maxn+10];

void getPrime2(int L,int R)
{
    memset(isprime,1,sizeof(isprime));
    //isprime[0]=isprime[1]=0;//这句话不能加,考虑到左区间为2的时候,加上这一句,素数2,3会被判成合数
    if(L<2) L=2;
    for(int i=1;i<=prime[0]&&(long long)prime[i]*prime[i]<=R;i++)
    {
        int s=L/prime[i]+(L%prime[i]>0);//计算第一个比L大且能被prime[i]整除的数是prime[i]的几倍,从此处開始筛
        if(s==1)//非常特殊,假设从1開始筛的话,那么2会被筛成非素数
            s=2;
        for(int j=s;(long long)j*prime[i]<=R;j++)
            if((long long)j*prime[i]>=L)
            isprime[j*prime[i]-L]=false; //区间映射 ,比方区间长度为4的区间[4,7],映射到[0,3]中,由于题目范围2,147,483,647数组开不出来
    }
    prime2[0]=0;
    for(int i=0;i<=R-L;i++)
        if(isprime[i])
        prime2[++prime2[0]]=i+L;
}

int main()
{
    getPrime();
    int L,R;
    while(scanf("%d%d",&L,&R)!=EOF)
    {
        getPrime2(L,R);
        if(prime2[0]<2)
            printf("There are no adjacent primes.\n");
        else
        {
            int x1=0,x2=1000000,y1=0,y2=0;
            for(int i=1;i<prime2[0];i++)
            {
                if(prime2[i+1]-prime2[i]<x2-x1)
                {
                    x1=prime2[i];
                    x2=prime2[i+1];
                }
                if(prime2[i+1]-prime2[i]>y2-y1)
                {
                    y1=prime2[i];
                    y2=prime2[i+1];
                }
            }
            printf("%d,%d are closest, %d,%d are most distant.\n",x1,x2,y1,y2);
        }
    }
    return 0;
}

版权声明:本文博主原创文章,博客,未经同意不得转载。

时间: 2024-10-07 14:16:45

[ACM] POJ 2689 Prime Distance (筛选范围大素数)的相关文章

[ACM] POJ 2689 Prime Distance (大区间素数筛选)

Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12811   Accepted: 3420 Description The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number th

POJ 2689 Prime Distance 素数筛选法应用

题目来源:POJ 2689 Prime Distance 题意:给出一个区间L R 区间内的距离最远和最近的2个素数 并且是相邻的 R-L <= 1000000 但是L和R会很大 思路:一般素数筛选法是拿一个素数 然后它的2倍3倍4倍...都不是 然后这题可以直接从2的L/2倍开始它的L/2+1倍L/2+2倍...都不是素数 首先筛选出一些素数 然后在以这些素数为基础 在L-R上在筛一次因为 R-L <= 1000000 可以左移开一个1百万的数组 #include <cstdio>

poj 2689 Prime Distance 【数论】【筛法求素数】

题目链接:传送门 题目大意: 给你L和R两组数,L和R的范围是2^32,其间隔(即R-L最大为1,000,000.) .让你求出L和R之间素数的最大间隔和最小的间隔. 比如 2 17.之间的最小素数间隔是2 3,最大的素数间隔是11 17. 要是直接进行一个2^32次方筛法然后在判断是会T的. 我们这样来想,筛法求素数的原理是什么: /**vis数组标记为0则说明是素数*/ int vis[10005]; void getPrimevis(int n) { int m=sqrt(n+0.5);

POJ题目2689 Prime Distance(任何区间素数筛选)

Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13459   Accepted: 3578 Description The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number th

数论 - 素数的运用 --- poj 2689 : Prime Distance

Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12512   Accepted: 3340 Description The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number th

POJ 2689 Prime Distance

Prime Distance Description The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a

POJ - 2689 Prime Distance(大区间素数筛选)

Description The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is

poj 2689 Prime Distance(大区间筛素数)

http://poj.org/problem?id=2689 题意:给出一个大区间[L,U],分别求出该区间内连续的相差最小和相差最大的素数对. 因为L<U<=2147483647,直接筛素数是不行的,数组就开不了.但是可以根据素数筛的原理.我们先筛出sqrt(2147483647)以内的素数,然后拿这些素数去筛[L,U]之间的素数,即两次素数筛.但是L,U还是很大,但U-L<=1000000,所以进行区间平移,将[L,U]平移为[0,U-L],就能用数组放得下. #include &l

POJ 2689 Prime Distance(素数筛选)

题目链接:http://poj.org/problem?id=2689 题意:给出一个区间[L, R],找出区间内相连的,距离最近和距离最远的两个素数对.其中(1<=L<R<=2,147,483,647) R - L <= 1000000 思路:数据量太大不能直接筛选,要采用两次素数筛选来解决.我们先筛选出2 - 50000内的所有素数,对于上述范围内的数,如果为合数,则必定有2 - 50000内的质因子.换一句话说,也就是如果一个数没有2 - 50000内的质因子,那么这个数为素