Prime Distance
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 12811 | Accepted: 3420 |
Description
The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors
(it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there
are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers.
Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair.
You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).
Input
Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.
Output
For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.
Sample Input
2 17 14 17
Sample Output
2,3 are closest, 7,11 are most distant. There are no adjacent primes.
Source
解题思路:
给出一个区间[L,R], 范围为1<=L< R<=2147483647,区间长度长度不超过1000000
求距离近期和最远的两个素数(也就是相邻的差最小和最大的素数)
筛两次,第一次筛出1到1000000的素数,由于1000000^2已经超出int范围,这种素数足够了。
函数getPrim(); prime[ ] 存第一次筛出的素数,总个数为prime[0]
第二次利用已经筛出的素数去筛L,R之间的素数
函数getPrime2(); isprime[] 推断该数是否为素数 prime2[ ]筛出的素数有哪些,一共同拥有prime2[0]个
代码:
#include <iostream> #include <string.h> #include <stdio.h> #include <cmath> #include <algorithm> using namespace std; const int maxn=1e6; int prime[maxn+10]; void getPrime() { memset(prime,0,sizeof(prime));//一開始prime都设为0代表都是素数(反向思考) for(int i=2;i<=maxn;i++) { if(!prime[i]) prime[++prime[0]]=i; for(int j=1;j<=prime[0]&&prime[j]<=maxn/i;j++) { prime[prime[j]*i]=1;//prime[k]=1;k不是素数 if(i%prime[j]==0) break; } } } bool isprime[maxn+10]; int prime2[maxn+10]; void getPrime2(int L,int R) { memset(isprime,1,sizeof(isprime)); //isprime[0]=isprime[1]=0;//这句话不能加,考虑到左区间为2的时候,加上这一句,素数2,3会被判成合数 if(L<2) L=2; for(int i=1;i<=prime[0]&&(long long)prime[i]*prime[i]<=R;i++) { int s=L/prime[i]+(L%prime[i]>0);//计算第一个比L大且能被prime[i]整除的数是prime[i]的几倍,从此处開始筛 if(s==1)//非常特殊,假设从1開始筛的话,那么2会被筛成非素数 s=2; for(int j=s;(long long)j*prime[i]<=R;j++) if((long long)j*prime[i]>=L) isprime[j*prime[i]-L]=false; //区间映射 ,比方区间长度为4的区间[4,7],映射到[0,3]中,由于题目范围2,147,483,647数组开不出来 } prime2[0]=0; for(int i=0;i<=R-L;i++) if(isprime[i]) prime2[++prime2[0]]=i+L; } int main() { getPrime(); int L,R; while(scanf("%d%d",&L,&R)!=EOF) { getPrime2(L,R); if(prime2[0]<2) printf("There are no adjacent primes.\n"); else { int x1=0,x2=1000000,y1=0,y2=0; for(int i=1;i<prime2[0];i++) { if(prime2[i+1]-prime2[i]<x2-x1) { x1=prime2[i]; x2=prime2[i+1]; } if(prime2[i+1]-prime2[i]>y2-y1) { y1=prime2[i]; y2=prime2[i+1]; } } printf("%d,%d are closest, %d,%d are most distant.\n",x1,x2,y1,y2); } } return 0; }
版权声明:本文博主原创文章,博客,未经同意不得转载。