mysql 大数据量求平均值

需求是:对于一个设备,求一天内每个小时的平均值,一个月内每天的平均值,更通用的需求是,从起始时间到结束时间,每隔一段时间,求一个平均值。
目前的解决策略是:在存储过程中进行处理,从起始时间到结束时间,切割成段,求出每一段的平均值,合并起来。
存在问题:数据量很大的时候,会存在严重的性能问题。比如:一个月内每天的平均值,这个涉及的数据量将非常大,查询非常耗时。目前没有做过基准测试,具体的时间消耗还不确定。
解决办法:目前想到的是,新建一个平均值表,定时把一段时间的平均值写入到这个表里面。以后从平均值表里面查询。

时间: 2024-10-22 15:58:33

mysql 大数据量求平均值的相关文章

MySQL 大数据量快速插入方法和语句优化

MySQL大数据量快速插入方法和语句优化是本文我们主要要介绍的内容,接下来我们就来一一介绍,希望能够让您有所收获! INSERT语句的速度 插入一个记录需要的时间由下列因素组成,其中的数字表示大约比例: 连接:(3) 发送查询给服务器:(2) 分析查询:(2) 插入记录:(1x记录大小) 插入索引:(1x索引) 关闭:(1) 这不考虑打开表的初始开销,每个并发运行的查询打开. 表的大小以logN (B树)的速度减慢索引的插入. 加快插入的一些方法 如果同时从同一个客户端插入很多行,使用含多个VA

MySQL大数据量分页查询方法及其优化

方法1: 直接使用数据库提供的SQL语句 语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N 适应场景: 适用于数据量较少的情况(元组百/千级) 原因/缺点: 全表扫描,速度会很慢 且 有的数据库结果集返回不稳定(如某次返回1,2,3,另外的一次返回2,1,3). Limit限制的是从结果集的M位置处取出N条输出,其余抛弃. 方法2: 建立主键或唯一索引, 利用索引(假设每页10条) 语句样式: MySQL中,可用如下方法: SELECT * FRO

Mysql大数据量问题与解决

今日格言:了解了为什么,问题就解决了一半. Mysql 单表适合的最大数据量是多少? 我们说 Mysql 单表适合存储的最大数据量,自然不是说能够存储的最大数据量,如果是说能够存储的最大量,那么,如果你使用自增 ID,最大就可以存储 2^32 或 2^64 条记录了,这是按自增 ID 的数据类型 int 或 bigint 来计算的:如果你不使用自增 id,且没有 id 最大值的限制,如使用足够长度的随机字符串,那么能够限制单表最大数据量的就只剩磁盘空间了.显然我们不是在讨论这个问题. 影响 My

MySQL大数据量快速分页实现(转载)

在mysql中如果是小数据量分页我们直接使用limit x,y即可,但是如果千万数据使用这样你无法正常使用分页功能了,那么大数据量要如何构造sql查询分页呢? 般刚开始学SQL语句的时候,会这样写 代码如下:  代码如下 复制代码 SELECT * FROM table ORDER BY id LIMIT 1000, 10; 但在数据达到百万级的时候,这样写会慢死 代码如下:  代码如下 复制代码 SELECT * FROM table ORDER BY id LIMIT 1000000, 10

mysql大数据量表索引与非索引对比

1:不要在大数据量表中轻易改名字(做任何操作都是非常花费时间) 2个多亿数据量的表 改名操作  执行时间花费8分多钟 (如果是加索引等其他操作 那时间花费不可预估) 2:给大数据量的mysql表 添加索引 所花费的时间 如下 在日后生产环境 如果需要给表添加索引等操作 心里要有预估时间的花费范围 3: explain 解释 语句 type:ALL 进行完整的表扫描 .row:213284372  mysql预估需要扫描213284372 条记录来完成这个查询.可想而知 表数据量越大全表扫描越慢.

提高MYSQL大数据量查询的速度

1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num is null可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:select id from t where num=0 3.应尽量避免在 where 子句中使用!=或<>操作符,否则引擎将放弃使用

java mysql大数据量批量插入与流式读取分析

总结下这周帮助客户解决报表生成操作的mysql 驱动的使用上的一些问题,与解决方案.由于生成报表逻辑要从数据库读取大量数据并在内存中加工处理后在 生成大量的汇总数据然后写入到数据库.基本流程是 读取->处理->写入. 1 读取操作开始遇到的问题是当sql查询数据量比较大时候基本读不出来.开始以为是server端处理太慢.但是在控制台是可以立即返回数据的.于是在应用 这边抓包,发现也是发送sql后立即有数据返回.但是执行ResultSet的next方法确实阻塞的.查文档翻代码原来mysql驱动默

总结MySQL大数据量下如何进行优化

写在建库前: 在确定数据库业务后.建立数据库表格时,就应对一些常见问题有所考虑,以避免在数据增长一段时间后再做应对,可能造成时间及维护成本增加: 数据的月增量,年增量 数据的快速增长点 是否需要触发器或事件等 查询业务需求 服务器访问量 以上的考虑项,对数据库的类型.表的结构.表间关系的定义及数据库配置都有非常重要的影响. 运行后优化: 优化顺序 第一,优化你的sql和索引: 想实现一个查询,可以写出很多种查询语句,不同的语句,根据你选择的引擎.表中数据的分布情况.索引情况.数据库优化策略.查询

mysql大数据量之limit优化

背景:当数据库里面的数据达到几百万条上千万条的时候,如果要分页的时候(不过一般分页不会有这么多),如果业务要求这么做那我们需要如何解决呢?我用的本地一个自己生产的一张表有五百多万的表,来进行测试,表名为big_data;首先我们看如下几条sql语句:在这之前我们开启profiling来监测sql语句执行的情况.set profiling=1;1.查询从第10w条数据开始分页10条2.查询从第20w条数据分页10条3.查询从第30w条数据分页10条 3.查询从第300w条数据分页10条 3.查询从