Python之路【第三篇补充】:Python基础(三)

lambda表达式

学习条件运算时,对于简单的 if else 语句,可以使用三元运算来表示,即:

# 普通条件语句
if 1 == 1:
    name = ‘luotianshuai‘
else:
    name = ‘shuaige‘

# 三元运算
name = ‘luotianshuai‘ if 1 == 1 else ‘shuaige‘

#这个就是if else的一个简写。
#if 条件成立的时候name为‘luotianshuai‘ 不成立的时候为:‘shuaige‘ ,语法糖!

那么函数有没有他的简写呢?也是有的lambda表达式!

lambda 和if  else的三元运算一样,是为了简化函数,但是:

1、只能做简单的操作
2、自动return

看下面两个函数的对比:

‘‘‘正常函数‘‘‘
def func(arg):
    return arg + 1
result = func(100)
print result

‘‘‘lambda表达式‘‘‘
func2 =  lambda a: a + 1
result = func2(10000)
#这里调用函数的时候就是lambda表达式左边的等号就是他函数的调用!
print result

#执行结果:
#101
#10001

内置函数 二

一、map

遍历序列,对序列中每个元素进行操作,最终获取新的序列。

解释:

在Python中,最基本的数据结构是序列(sequence)。序列中的每个元素被分配一个序号——即元素的位置,也称为索引。第一个索引是 0,第二个则是 1,以此类推。序列中的最后一个元素标记为 -1,倒数第二个元素为 -2,一次类推。

Python包含 6 中内建的序列,包括列表、元组、字符串、Unicode字符串、buffer对象和xrange对象。

‘‘‘例子1‘‘‘
li =  [11,22,33]

def func1(arg):
    return arg + 1  #这里乘除都可以

new_list = map(func1,li)  #这里map调用函数,函数的规则你可以自己指定,你函数定义成什么他就做什么操作!
print new_list
输出结果:[12, 23, 34]

‘‘‘例子2‘‘‘
li = [‘shuaige‘,‘nihao‘,]
def func1(arg):
    return ‘%s test string‘ % arg  #或者使用+进行拼接万恶的+能不用最好不用他会在内存中开辟新的空间!

new_strlist = map(func1,li)
print new_strlist

输出结果:[‘shuaige test string‘, ‘nihao test string‘]

‘‘‘例子3‘‘‘
li = ‘abcdefg‘
def func1(arg):
    return ‘%s test string‘ % arg

new_list = map(func1,li)
print new_list
#结果:[‘a test string‘, ‘b test string‘, ‘c test string‘, ‘d test string‘, ‘e test string‘, ‘f test string‘, ‘g test string‘]

map例子

使用lambda表达式:

li = [11,22,33,44,55]
new_li = map(lambda a:a + 100,li)
print new_li

#输出结果:   [111, 122, 133, 144, 155]

#多个列表操作:
l1 = [11,22,33,44,55]
l2 = [22,33,44,55,66]
l3 = [33,44,55,66,77]
print map(lambda a1,a2,a3:a1+a2+a3,l1,l2,l3)
#输出结果:  [66, 99, 132, 165, 198]
#这里需要注意如果使用map函数列表中的元素必须是相同的才可以!否则就会报下面的错误!
#TypeError: unsupported operand type(s) for +: ‘int‘ and ‘NoneType‘,如果看下面
l1 = [11,22,33,44,55]
l2 = [22,33,44,55,66]
l3 = [33,44,55,66,]
#l3的数据少一个,如果元素里的元素为空那么他调用的时候这个元素就是None

lambda表达式

二、filter

对于序列中的元素进行筛选,最终获取符合条件的序列!

li = [11,22,33,44,55,66,77,88]

print filter(lambda a:a>33,li)
输出结果:[44, 55, 66, 77, 88]

三、reduce

对于序列内所有元素进行累计操作

li = [1,2,3,4,5,6,7,8]
result =  reduce(lambda a1,a2:a1+a2,li) #累乘、除、加、减
print result

# reduce的第一个参数,函数必须要有两个参数,因为他是两两进行操作
# reduce的第二个参数,要循环的序列
# reduce的第三个参数,初始值

#初始值
li = [1,2,3,4,5,6,7,8]
result =  reduce(lambda a1,a2:a1+a2,li,100000) #累乘、除、加、减
print result

默认参数:

yield生成器

yield和return的区别:

yield跳出函数后会记录当前函数的状态当下次调用的时候,从记录的状态开始!

return后将直接跳出函数!

1、对比range 和 xrange 的区别

>>> print range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> print xrange(10)
xrange(10)

如上代码所示,range会在内存中创建所有指定的数字,而xrange不会立即创建,只有在迭代循环时,才去创建每个数组。

看下下面的例子:(自定义生成器)

def mrange(arg):
    seed = 0
    while True:
        seed = seed +1
        if seed > arg:
            return
        else:
            yield seed
for i in mrange(10):
    print i

冒泡算法

需求:请按照从小到大对列表 [13, 22, 6, 99, 11] 进行排序

思路:相邻两个值进行比较,将较大的值放在右侧,依次比较!

冒泡算法原理图:

冒泡算法实例:
列表中有5个元素两辆进行比较,然后用中间值进行循环替换!
既然这样,既然这样我们还可以用一个循环把上面的循环进行在次循环,用表达式构造出内部循环!

li = [13,22,6,99,11]
for n in range(1,len(li)):
    for m in range(len(li)-n):
        num1 = li[m]
        num2 = li[m+1]
    if num1 > num2:
        temp = li[m]
        li[m] = num2
        li[m+1] = temp
print li

让的原理和下面一样:

li = [13,22,6,99,11]

for m in range(4):  #等价于:for m in range(len(li)-1)
    num1 = li[m]
    num2 = li[m+1]
    if num1 > num2:
        temp = li[m]
        li[m] = num2
        li[m+1] = temp
print  li
for m in range(3): #等价于:for m in range(len(li)-2)
    num1 = li[m]
    num2 = li[m+1]
    if num1 > num2:
        temp = li[m]
        li[m] = num2
        li[m+1] = temp
print  li
for m in range(2): #等价于:for m in range(len(li)-3)
    num1 = li[m]
    num2 = li[m+1]
    if num1 > num2:
        temp = li[m]
        li[m] = num2
        li[m+1] = temp
print  li
for m in range(1): #等价于:for m in range(len(li)-4)
    num1 = li[m]
    num2 = li[m+1]
    if num1 > num2:
        temp = li[m]
        li[m] = num2
        li[m+1] = temp
print  li

冒泡算法原理

装饰器

装饰器是函数,只不过该函数可以具有特殊的含义,装饰器用来装饰函数或类,使用装饰器可以在函数执行前和执行后添加相应操作。

简单的来说在不修改原函数的情况下,在对原函数进行包装!

整理中。。。。。。。。。

时间: 2024-10-15 23:19:46

Python之路【第三篇补充】:Python基础(三)的相关文章

Python之路,第一篇:Python入门与基础

第一篇:Python入门与基础 1,什么是python? Python 是一个高层次的结合了解释性.编译性.互动性和面向对象的脚本语言. 2,python的特征: (1)易于学习,易于利用: (2)开发效率高,内建众多数据类型,强大的标准库支持: (3)高级语言: (4)可移植性,基于开放源代码特性 (5)可扩展性,如果你需要一段运行很快的关键代码,或者是想要编写一些不愿开放的算法,你可以使用C或C++完成那部分程序,然后从你的Python程序中调用. (6)可嵌入,你可以将Python嵌入到C

Python之路【第一篇:Python基础之拾遗】

拾遗一:Python种类 1.Cpython: 由C语言实现,将.py文件编译为.pyc文件的字节码,再转换为机器码.    2.Jpython: 由JAVA语言实现,将python的代码编译为JAVA的字节码,再转换为机器码.    3.Ironpython: 由C#实现,将将python的代码编译为C#字节码,再转换为机器码. 4.pypy: 将python的代码转换为字节码的同时也转换为机器码,提高执行速度. 拾遗二:Python的编码 1.ASCII码(American Standard

Python之路【第一篇:Python基础】

一:python的使用 1.python的两个版本:python2.0与python3.0.这两个版本的区别在于python3是不向下兼容python2的组件和扩展的,但是在python2.6和2.7的两个版本中将会继续兼容python2.0和3.0两个版本.简单点说就是python2.6与2.7是2.0版本向3.0版本的过渡版本,同时python的2.7版本也将是最后一个2.0版本,之后将全部使用python的3.0版本. Windows中python3.x的安装: 1 1.下载安装包 2 h

Python之路,第二篇:Python入门与基础4

Python3 字符串 字符串是一个有序的字符序列 如何表示一个字符串: 在非注释中凡是用引号括起来的部分都是字符串: '  单引号     "  双引号      '''  三单引号    """  三双引号 空字符串的表示方法: ' '   .  " "  .   '''   '''  .   """   """ 空字符串的布尔值(bool)为False. >>>

Python之路,第九篇:Python入门与基础9

python3  集合set 集合set概念 集合是可变的容器 集合内的数据对象都是违约的(不能重复多次) 集合是无序的存储结构,集合中的数据没有先后关系 集合是相当于只有键,没有值的字典,则键是集合的数据. 集合内的元素必须是不可变对象 集合是可迭代的(可以用for等遍历) 原文地址:https://www.cnblogs.com/weizitianming/p/8987981.html

Python之路【第二篇】:Python基础(一)

Python之路[第二篇]:Python基础(一) 入门知识拾遗 一.作用域 对于变量的作用域,执行声明并在内存中存在,该变量就可以在下面的代码中使用. 1 2 3 if 1==1:     name = 'wupeiqi' print  name 下面的结论对吗? 外层变量,可以被内层变量使用 内层变量,无法被外层变量使用 二.三元运算 1 result = 值1 if 条件 else 值2 如果条件为真:result = 值1如果条件为假:result = 值2 三.进制 二进制,01 八进

Python之路【第九篇】:Python操作 RabbitMQ、Redis、Memcache、SQLAlchemy

Python之路[第九篇]:Python操作 RabbitMQ.Redis.Memcache.SQLAlchemy Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站的速度.Memcached基于一个存储键/值对的hashmap.其守护进程(daemon )是用C写的,但是客户端可以用任何语言来编写,并通过memcached协议与守护进程通信. Memc

Python之路【第九篇】:Python基础(26)——socket server

socketserver Python之路[第九篇]:Python基础(25)socket模块是单进程的,只能接受一个客户端的连接和请求,只有当该客户端断开的之后才能再接受来自其他客户端的连接和请求.当然我 们也可以通过python的多线程等模块自己写一个可以同时接收多个客户端连接和请求的socket.但是这完全没有必要,因为python标准库已经为 我们内置了一个多线程的socket模块socketserver,我们直接调用就可以了,完全没有必要重复造轮子. 我们只需简单改造一下之前的sock

第三篇——第二部分——第三文 配置SQL Server镜像——域环境

原文:第三篇--第二部分--第三文 配置SQL Server镜像--域环境 原文出处:http://blog.csdn.net/dba_huangzj/article/details/28904503 本文将演示如何在域环境下部署镜像,在域中部署相对来说简单很多,但是很多企业并不真正使用域来管理服务器(本人所在的公司就是其一),所以有必要演示非域环境,并且重点放在非域环境下.但是作为实践经验和最佳建议,强烈使用域环境管理.非域环境将在第四文中演示:http://blog.csdn.net/dba

Python学习之路【第一篇】-Python简介和基础入门

1.Python简介 1.1 Python是什么 相信混迹IT界的很多朋友都知道,Python是近年来最火的一个热点,没有之一.从性质上来讲它和我们熟知的C.java.php等没有什么本质的区别,也是一种开发语言,而且已经进阶到主流的二十多种开发语言的top 5(数据源自最新的TIOBE排行榜). 来头不小啊!二十多种主流的开发语言,我该从哪一个开始呢?人生苦短,let‘s python! 1.2 Python的由来和发展趋势 Python的前世源自鼻祖“龟叔”.1989年,吉多·范罗苏姆(Gu