初级模拟电路:4-5 共基放大电路(交流分析)

回到目录

共基放大电路的形式比较简单,其特点是输入阻抗低、输出阻抗高,电压放大倍数可以非常大,但是电流放大倍数略小于1。本小节我们对共基放大电路进行详细的交流分析。

共基放大电路典型如下图所示:

图4-5.01

注意在上图中的各个电压电流符号,有的仅含交流分量,有的同时包含交流分量和直流分量。集电极电阻RC起到了负载电阻的作用,故输出电流io从RC上通过。而C2的作用仅在于隔离直流取出交流输出电压vo,并无电流通过。

在交流分析中,电容C1和C2可视为短路,直流电压源可视为直接通地,将上图中的BTJ晶体管替换成re等效模型后的交流等效电路如下图所示(注意下图中的所有电量符号都变成了交流的相量形式):

图4-5.02

上小节说过,共基放大电路的输出阻抗ro在兆欧级,故在上图中ro和RC并联时,近似开路,可以略去不予考虑(注意:在共射放大电路中,有时ro不能省略,后文会详细说明)。

● 输入阻抗:

输入阻抗可以从上图中直接看出:

● 输出阻抗:

当将输入电压Vi置0时,Ie=0,受控电流源αIe=0,可视为开路,因此输出阻抗为:

● 电压放大倍数:

输入电压Vi和输出电压Vo分别为:

因此电压放大倍数为:

Av为正值,说明共基放大电路中,输入电压信号Vi和输出电压信号Vo是同相的。

● 电流放大倍数:

由于re的值通常在几欧到十几欧左右,而RE的值一般在kΩ数量级,故输入电流可近似为:

则电流放大倍数为:

回到目录

( end of 4-5)



初级模拟电路:4-5 共基放大电路(交流分析)

原文地址:https://www.cnblogs.com/initcircuit/p/12665931.html

时间: 2024-10-31 08:26:35

初级模拟电路:4-5 共基放大电路(交流分析)的相关文章

差分放大电路知识总结

本文摘自:http://m.elecfans.com/article/650645.html 什么是差分放大电路 差分放大电路利用电路参数的对称性和负反馈作用,有效地稳定静态工作点,以放大差模信号抑制共模信号为显著特征,广泛应用于直接耦合电路和测量电路的输入级.但是差分放大电路结构复杂.分析繁琐,特别是其对差模输入和共模输入信号有不同的分析方法,难以理解,因而一直是模拟电子技术中的难点. 差分放大电路:按输入输出方式分:有双端输入双端输出.双端输入单端输出.单端输入双端输出和单端输入单端输出四种

晶体三极管及其基本放大电路

晶体三极管 晶体管的结构及其类型 晶体管的电流分配与放大作用 晶体管的共射特性曲线 晶体管的主要参数 放大电路的组成和工作原理 基本共射极放大电路的组成 放大电路的分析 直流通路和交流通路 静态分析 动态分析 基本放大电路是组成各种复杂放大电路的基本单元 晶体三极管 晶体三极管又称为双极型晶体管(BJT)-[因为空穴和电子都参与导电,是两种极性的载流子].半导体三极管等 晶体管的结构及其类型 ★发射极电流向里则为PNP,反之为NPN 三个区域分别称为发射区.基区和集电区,对应电极分别称为发射极.

初级模拟电路:3-6 共射放大电路-2(分压偏置的直流分析)

回到目录 (续上小节) 3. 分压偏置 前面的“改进型固定偏置”电路,虽然情况比原始的固定偏置电路好了一点,但还是不太理想,于是人们又设计出了性能更加稳定的分压偏置(voltage-divider bias configuration)电路,如下图所示: 图3-6.06 分压偏置电路的稳定性非常完美,放大系数β的变化对输出静态工作点IC和VCE几乎没有什么影响,我们在下面的分析中可以验证这一点. 对于分压偏置的输入端分析,有“近似分析”和“精确分析”两种方法,一般在实际工程应用中,“近似分析”法

初级模拟电路:概述

做嵌入式开发,以我个人的经验,虽然70%以上的时间都会花在软件上面(并且软件的比重将来还可能更多),但剩下那30%,无论如何也是要与硬件打交道的.那模拟电路和数字电路就是绕不过去的坎,总会碰上的. 很多嵌入式工程师比较怕模拟这一块,因为在学校里,虽然很多专业都会开模拟电路的课程,但我相信80%以上的人当年是没学明白的(包括我自己).后来由于工作中要用,不得不再回去啃书,而且买回来一堆古今中外的模电的书(噢,没有古),互相参照着看,才慢慢.慢慢.稍微.有点整明白了. 现在回过头再看当年学校里的模电

初级模拟电路:3-8 BJT数据规格书(直流部分)

回到目录 本小节我们以2N4123通用型BJT硅基晶体管为例,来介绍如何阅读BJT的数据规格书,点此链接可以阅读和下载2N4123的数据规格书. 1. 总体性能 打开datasheet后,首先看标题: 图3-8.01 可以看到,这是2N4123.2N4124共用的一个datasheet,而且是通用型NPN硅基三极管.然后在在第一页的右侧,厂家给出了管脚识别方法和管体上的文字标记含义: 图3-8.02 在第一页的主体篇幅,数据规格书列出了这个BJT晶体管的所有极限性能,好让使用者先对这个器件有一个

初级模拟电路:3-9 BJT三极管实现逻辑门

回到目录 BJT晶体管可以实现逻辑门,事实上,在场效应管被发明用于集成电路以前,各种逻辑门芯片中的电路就是用BJT晶体管来实现的.最早人们使用二极管与BJT组合来实现逻辑门,这个称为二极管-晶体管逻辑(Diode-Transistor Logic),简称DTL:后来改进为全部用BJT晶体管来实现逻辑门,这个称为晶体管-晶体管逻辑(Transistor-Transistor Logic),简称TTL.早期广为人知的TTL电平,就是基于这种用BJT晶体管实现的逻辑门.TTL的优点是响应速度比较快,缺

模拟电子电路基础--三极管放大电路

一.直流分析 Q点:静态工作点,IB,IC,UCE. 1.1 公式法    IB=(UCC-UBE)/RB    IC=βIB    UCE=UCC-ICRC 1.2 图解法    (1)通过直流负载方程UCE=UCC-ICRC画出直流负载线    (2)由基极回路求出IB    (3)找出iB=IB时,输出特性曲线和直流负载线的交点,该点就是Q点 二.交流分析 (1)作直流负载线,找出Q点    (2)过Q点作一条斜率为R’L=RC||RL的直线    (3)求UCE坐标的截距,U’CC=UC

初级模拟电路:1-3 二极管的伏安特性

好了,前面的就算不懂也没关系,真正的模拟电路从这里开始.要使用二极管做电路设计,第一件事就是掌握二极管的伏安特性曲线. 1.   完整的二极管伏安特性曲线 图 1-3.01 二级管的完整伏安特性如上图所示(为表示方便,图中横坐标和纵坐标在正半轴和负半轴的尺度是不一样的),说明如下: (1) 在正偏时,当VD很小时,电流接几乎为0.当VD增大到一定阈值后(图中为0.7V左右),电流开始极快地以指数级增长(毫安级). (2) 在反偏时,反向饱和电流IS维持一个很小值(微安级),不随反偏电压变化.但是

初级模拟电路:目录

前言概述 一.  PN结与二极管 1-1 半导体材料 1. 原子模型 2. 能带模型 3. 载流子 1-2 PN结与二极管 1. 掺杂半导体 2. PN结 3. 二极管的偏置 1-3 二极管的伏安特性 1. 完整的二极管伏安特性曲线 2. 温度影响 3. 简化的二极管伏安特性曲线 1-4 二极管的电阻 1-5 二极管的其他特性 1-6 二极管数据规格表 1-7 特殊用途二极管 初级模拟电路:目录 原文地址:https://www.cnblogs.com/initcircuit/p/1080175