「JSOI2015」salesman

「JSOI2015」salesman

传送门

显然我们为了使收益最大化就直接从子树中选大的就好了。

到达次数的限制就是限制了可以选的子树的数量,因为每次回溯上来都会减一次到达次数。

多种方案的判断就是看自己选中的子树中和没选的子树中是否存在两个值相等的,这样它们就可以通过互换来达到另一种方案,值得注意的是如果选了一个值为 \(0\) 的子树就肯定可以多一种方案出来,因为这颗子树选或不选都是满足最优的。

这里有个小问题:交到BZOJ上面去它会提示你 sort 没有声明,此时需要 #include <cstdlib> ,具体我也不知道为什么。。。

#include <algorithm>
#include <cstdlib>
#include <cstdio>
#include <vector>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
using namespace std;
template < class T > inline void read(T& s) {
    s = 0; int f = 0; char c = getchar();
    while ('0' > c || c > '9') f |= c == '-', c = getchar();
    while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
    s = f ? -s : s;
}

typedef long long LL;
const int _ = 1e5 + 5;

int tot, head[_]; struct Edge { int v, nxt; } edge[_ << 1];
inline void Add_edge(int u, int v) { edge[++tot] = (Edge) { v, head[u] }, head[u] = tot; }

int n, t[_], g[_]; LL a[_], dp[_];
inline bool cmp(int x, int y) { return dp[x] > dp[y]; }

inline void dfs(int u, int f) {
    vector < int > tmp; tmp.clear();
    dp[u] = a[u];
    for (rg int i = head[u]; i; i = edge[i].nxt)
        if (edge[i].v != f) dfs(edge[i].v, u), tmp.push_back(edge[i].v);
    int p = 0, lim = min((int) tmp.size(), t[u] - 1);
    sort(tmp.begin(), tmp.end(), cmp);
    while (p < lim && dp[tmp[p]] >= 0) dp[u] += dp[tmp[p]], g[u] |= g[tmp[p]], ++p;
    if ((p > 0 && p < lim && dp[tmp[p]] == dp[tmp[p - 1]]) || (p > 0 && dp[tmp[p - 1]] == 0)) g[u] = 1;
}

int main() {
#ifndef ONLINE_JUDGE
    file("cpp");
#endif
    read(n);
    for (rg int i = 2; i <= n; ++i) read(a[i]); a[1] = 0;
    for (rg int i = 2; i <= n; ++i) read(t[i]); t[1] = 2147483647;
    for (rg int u, v, i = 1; i < n; ++i) read(u), read(v), Add_edge(u, v), Add_edge(v, u);
    dfs(1, 0);
    printf("%lld\n", dp[1]);
    puts(g[1] ? "solution is not unique" : "solution is unique");
    return 0;
}

原文地址:https://www.cnblogs.com/zsbzsb/p/12283894.html

时间: 2024-11-11 13:27:58

「JSOI2015」salesman的相关文章

「JSOI2015」套娃

「JSOI2015」套娃 传送门 考虑贪心. 首先我们假设所有的套娃都互相不套. 然后我们考虑合并两个套娃 \(i\),\(j\) 假设我们把 \(i\) 套到 \(j\) 里面去,那么就可以减少 \(b_j \times out_i\) 的花费. 我们有一种 贪心策略就是说把所有套娃按 \(b\) 从大到小排序,然后每次找一个 \(out\) 最大的让它套. 我们可以这么证明正确性: 对于四个套娃 \(i, j, k, l\) ,假设 \(b_i > b_j, out_k > out_l\)

「JSOI2015」圈地

「JSOI2015」圈地 传送门 显然是最小割. 首先对于所有房子,权值 \(> 0\) 的连边 \(s \to i\) ,权值 \(< 0\) 的连边 \(i \to t\) ,然后对于所有的墙,连两条边,连接起墙两边的房子,容量就是修墙的费用,然后直接用权值和 - 最小割就是最大收益. 参考代码: #include <cstring> #include <cstdio> #define rg register #define file(x) freopen(x&qu

「JSOI2015」串分割

「JSOI2015」串分割 传送门 首先我们会有一个贪心的想法:分得越均匀越好,因为长的绝对比短的大. 那么对于最均匀的情况,也就是 \(k | n\) 的情况,我们肯定是通过枚举第一次分割的位置,然后每一段长度 \(\frac{n}{k}\) 最后取最小的. 把这个思想运用到一般情况:如果分出来两段长短不一,那么长的只会比短的那个长度多 \(1\) ,再仔细想想,所有段只会有两种不同的长度 \(\lfloor \frac{n}{k} \rfloor, \lceil \frac{n}{k} \r

字符串树「JSOI2015」

[题目描述] 萌萌买了一颗字符串树的种子,春天种下去以后夏天就能长出一棵很大的字符串树.字符串树很奇特,树枝上都密密麻麻写满了字符串,看上去很复杂的样子. 字符串树本质上还是一棵树,即N个节点N-1条边的连通无向无环图,节点从1到N编号.与普通的树不同的是,树上的每条边都对应了一个字符串.萌萌和JYY在树下玩的时候,萌萌决定考一考JYY.每次萌萌都写出一个字符串S和两个节点U,V,需要JYY立即回答U和V之间的最短路径(即,之间边数最少的路径.由于给定的是一棵树,这样的路径是唯一的)上有多少个字

AC日记——「HNOI2017」单旋 LiBreOJ 2018

#2018. 「HNOI2017」单旋 思路: set+线段树: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 100005 #define maxtree maxn<<2 int val[maxtree],tag[maxtree],L[maxtree],R[maxtree],mid[maxtree]; int op[maxn],ki[maxn],bi[maxn],cnt,size,n,ch[maxn]

「随笔」基于当下的思考

马德,说好的技术blog,变成日记本了... 下午的时候莫名其妙的感到很颓废,因为自己的不够强大感到忧虑和危机感十足.现在每每行走在技术的道路上,常觉得如履薄冰,如芒在背. 上大学之前和现在的心态其实差别挺大的,视野的开阔远远不止局限于自己的脚下.不过,这里的「上大学之前」只是一个时间描述词,并不觉得大学是最适合学习的地方,我很失望. 世界上的人无论性别,区域,宗教,兴趣爱好,总可以在互联网上找到志趣相同的人,总是可以不断打破自己的常识与惯性思维.总是有在相同领域比自己更强的人,挺好的. 关于知

「Unity」与iOS、Android平台的整合:3、导出的Android-Studio工程

本文属于「Unity与iOS.Android平台的整合」系列文章之一,转载请注明出处. Unity默认导出的是Android-Eclipse工程,毕竟Eclipse for Android开发在近一两年才开始没落,用户量还是非常巨大的. 个人认为AndroidStudio非常好用,能轻易解决很多Eclipse解决不了或者很难解决的问题. 所以我将Unity导出的Andoid工程分为Eclipse和AndroidStudio两部分. 不过我之后的相关内容都会使用AndroidStudio,希望依然

大数据和「数据挖掘」是何关系?---来自知乎

知乎用户,互联网 244 人赞同 在我读数据挖掘方向研究生的时候:如果要描述数据量非常大,我们用Massive Data(海量数据)如果要描述数据非常多样,我们用Heterogeneous Data(异构数据)如果要描述数据既多样,又量大,我们用Massive Heterogeneous Data(海量异构数据)--如果要申请基金忽悠一笔钱,我们用Big Data(大数据) 编辑于 2014-02-2817 条评论感谢 收藏没有帮助举报作者保留权利 刘知远,NLPer 4 人赞同 我觉得 大数据

开放的智力8:实用「成功学」

可实现的「成功学」 现在我想为这里的年轻人介绍一种可实现的「成功学」.希望这个我自创的理论,可以改变很多人的一生. 当我们评价一个事情值不值得去做.应该花多少精力去做的时候,应该抛弃单一的视角,而是分两个不同的维度来看,一是该事件将给我带来的收益大小(认知.情感.物质.身体方面的收益皆可计入),即「收益值」:二是该收益随时间衰减的速度,我称为「收益半衰期」,半衰期长的事件,对我们的影响会持续得较久较长. 这两个维度正交以后就形成了一个四象限图.我们生活.学习和工作中的所有事情都可以放进这个图里面