Description
给你 \(n+1\) 个节点的一棵树,节点编号为 \(0\sim n\) , \(0\) 为根。边集为 \(\mathbb{E}=\left\{(u,v)\big|\forall i\in[1,n],\left(\left\lfloor\frac{i}{k}\right\rfloor,i\right)\right\}\) 。给出 \(n\) 个待选序号,让你为 \(1\sim n\) 这 \(n\) 个节点编号,第 \(i\) 号节点编为 \(a_i\),要求父亲编号小于等于儿子的编号。求满足要求的序列 \(a_1,a_2,\cdots,a_n\) 中字典序最大的一个。
\(1\leq n\leq 500000\)
Solution
直接递归贪心回溯时选一个未选的最大值是错的。
考虑为什么会出错,依旧举一个例子:
4 2
1 1 1 2
画成图就是:
如果按照刚才的贪心方式,我们会先将 \(2\) 赋给 \(4\) 号节点,再将 \(1\) 赋给 \(2\) 号节点。这样就错了,考虑为什么?
因为容易发现,不论怎么分配, \(2\) 号节点一定只能赋为 \(1\) ,这时被选的数中有两个 \(1\) ,等于说我们可以让 \(4\) 号点取 \(1\) ,这样是更优的。
那么之前的贪心就错了,但不过它提供了一个思路,就是对于一个节点的儿子们,一定是先尽可能将标号小的儿子的子树用大的标号标。唯一需要处理的就是子树的根节点的标号可能有多个相同的备选。
我们将被选数从大到小排序。一个节点按之前的方式编号,我们就要选与这个编号相同的最靠右的一个。这样能保证最优。
我们不用递归,我们只需要枚举节点时为其子树预留节点即可。
考虑线段树维护这样的一个数组 \(f\) ,\(f_i\) 表示 \(i\) 位置前有多少个数可选。
每次查询的时候只要找到这样的一个最靠左的位置 \(x\) ,使得 \(\forall i,f_i\geq size_i\) ,其中 \(size_i\) 为当前节点子树的大小。
然后将 \(x\) 赋为与这个编号相同的最靠右的一个的位置。那么这个位置的值就是被选值。
处理完之后,我们还要对 \(x\) 之后的 \(f\) 数组进行修改。
以上操作都可以用线段树维护。
值得注意的是由于处理到一个节点的时候,如果它有父亲,那么要将其父亲的预留的额度删去。
如果仍有不理解,可参见ppt。
Code
#include <bits/stdc++.h>
using namespace std;
const int N = 500000+5;
int n, a[N], fa[N], nxt[N], size[N], ans[N]; double k;
struct Segment_tree {
#define lr(o) (o<<1)
#define rr(o) (o<<1|1)
int minn[N<<2], tag[N<<2];
void pushdown(int o) {
minn[lr(o)] += tag[o], tag[lr(o)] += tag[o];
minn[rr(o)] += tag[o], tag[rr(o)] += tag[o];
tag[o] = 0;
}
void build(int o, int l, int r) {
if (l == r) {minn[o] = l; return; } int mid = (l+r)>>1;
build(lr(o), l, mid), build(rr(o), mid+1, r);
minn[o] = min(minn[lr(o)], minn[rr(o)]);
}
void update(int o, int l, int r, int a, int b, int k) {
if (a <= l && r <= b) {minn[o] += k, tag[o] += k; return; }
pushdown(o); int mid = (l+r)>>1;
if (a <= mid) update(lr(o), l, mid, a, b, k);
if (b > mid) update(rr(o), mid+1, r, a, b, k);
minn[o] = min(minn[lr(o)], minn[rr(o)]);
}
int query(int o, int l, int r, int k) {
if (l == r) return minn[o] >= k ? l : l+1;
pushdown(o); int mid = (l+r)>>1;
if (k <= minn[rr(o)]) return query(lr(o), l, mid, k);
else return query(rr(o), mid+1, r, k);
}
}T;
bool comp(const int &a, const int &b) {return a > b; }
void work() {
scanf("%d%lf", &n, &k);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]); sort(a+1, a+n+1, comp);
for (int i = n; i >= 1; i--) {
nxt[i] = i, fa[i] = floor(1.*i/k);
++size[i]; size[fa[i]] += size[i];
if (a[i] == a[i+1]) nxt[i] = nxt[i+1];
}
T.build(1, 1, n);
for (int i = 1; i <= n; i++) {
if (fa[i] && fa[i] != fa[i-1]) T.update(1, 1, n, ans[fa[i]], n, size[fa[i]]-1);
int loc = nxt[T.query(1, 1, n, size[i])]; ans[i] = loc;
T.update(1, 1, n, loc, n, -size[i]);
}
for (int i = 1; i <= n; i++) printf("%d ", a[ans[i]]);
}
int main() {work(); return 0; }
原文地址:https://www.cnblogs.com/NaVi-Awson/p/8975877.html