poj 2438 Children's Dining

http://poj.org/problem?id=2438

题意:

有2*N个人要坐在一张圆桌上吃饭,有的人之间存在敌对关系,安排一个座位次序,使得敌对的人不相邻.

假设每个人最多有N-1个敌人.如果没有输出"No solution!".

如果i和j可以相邻,之间连一条边

每个人最多有N-1个敌人,所以每个人至少会连出去N+1条边

根据狄拉克定理,图一定是哈密顿图

所以本题不存在无解的情况

然后输出一条哈密顿回路就好了

有关哈密顿图与哈密顿回路的问题 参见文章

http://www.cnblogs.com/TheRoadToTheGold/p/8439160.html

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>

using namespace std;

#define N 401

int n,m;

bool e[N][N];

int cnt,s,t;
bool vis[N];
int ans[N];

void read(int &x)
{
    x=0; char c=getchar();
    while(!isdigit(c)) c=getchar();
    while(isdigit(c)) { x=x*10+c-‘0‘; c=getchar(); }
}

void Reverse(int i,int j)
{
    while(i<j) swap(ans[i++],ans[j--]);
}

void expand()
{
    while(1)
    {
        int i;
        for(i=1;i<=n;++i)
            if(e[t][i] && !vis[i])
            {
                ans[++cnt]=t=i;
                vis[i]=true;
                break;
            }
        if(i>n) return;
    }
}

void Hamilton()
{
    memset(vis,false,sizeof(vis));
    cnt=0;
    s=1;
    for(t=1;t<=n;++t)
        if(e[s][t]) break;
    vis[s]=vis[t]=true;
    cnt=2;
    ans[1]=s;
    ans[2]=t;
    while(1)
    {
        expand();
        Reverse(1,cnt);
        swap(s,t);
        expand();
        if(!e[s][t])
        {
            int i;
            for(i=2;i<cnt;++i)
                if(e[ans[i]][t] && e[s][ans[i+1]]) break;
            t=ans[i+1];
            Reverse(i+1,cnt);
        }
        if(cnt==n) break;
        int j,i;
        for(j=1;j<=n;++j)
            if(!vis[j])
            {
                for(i=2;i<cnt;++i)
                    if(e[ans[i]][j]) break;
                if(e[ans[i]][j]) break;
            }
        s=ans[i-1];
        t=j;
        Reverse(1,i-1);
        Reverse(i,cnt);
        ans[++cnt]=j;
        vis[j]=true;
    }
    for(int i=1;i<cnt;++i) printf("%d ",ans[i]);
    printf("%d\n",ans[cnt]);
}

int main()
{
    int u,v;
    while(1)
    {
        read(n); read(m);
        if(!n) return 0;
        memset(e,true,sizeof(e));
        n<<=1;
        while(m--)
        {
            read(u); read(v);
            e[u][v]=e[v][u]=false;
        }
        for(int i=1;i<=n;++i) e[i][i]=false;
        Hamilton();
    }
}

Children‘s Dining

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 4672   Accepted: 734   Special Judge

Description

Usually children in kindergarten like to quarrel with each other. This situation annoys the child-care women. For instant, when diner time comes, a fierce conflict may break out when a certain couple of children sitting side by side who are hostile with each other. Although there aren‘t too many children dining at the same round table, but the relationship of "enemy" or "friend" may be very complex. The child-care women do come across a big problem. Now it is time for you to help them to figure out a proper arrangement of sitting, with which no two "enemy" children is adjacent.

Now we assume that there are 2 * n children who sit around a big table, and that none has more than n - 1 "enemies".

Input

The input is consisted of several test blocks. For each block, the first line contains two integers n and m (1 <= n <= 200, 0 <= m <= n (n - 1)). We use positive integers from 1 to 2 * n to label the children dining round table. Then m lines followed. Each contains positive integers i and j ( i is not equal to j, 1 <= i, j <= 2 * n), which indicate that child i and child j consider each other as "enemy". In a input block, a same relationship isn‘t given more than once, which means that if "i j" has been given, "j i" will not be given.

There will be a blank line between input blocks. And m = n = 0 indicates the end of input and this case shouldn‘t be processed.

Output

For each test block, if the proper arrangement exist, you should print a line with a proper one; otherwise, print a line with "No solution!".

Sample Input

1 0

2 2
1 2
3 4

3 6
1 2
1 3
2 4
3 5
4 6
5 6

4 12
1 2
1 3
1 4
2 5
2 6
3 7
3 8
4 8
4 7
5 6
5 7
6 8

0 0

Sample Output

1 2
4 2 3 1
1 6 3 2 5 4
1 6 7 2 3 4 5 8

poj 2438 Children's Dining

原文地址:https://www.cnblogs.com/TheRoadToTheGold/p/8439609.html

时间: 2024-10-26 03:20:16

poj 2438 Children's Dining的相关文章

POJ 2438 Children&#39;s Dining(哈密顿回路)

题目链接:http://poj.org/problem?id=2438 题意: 有2*N个小朋友要坐在一张圆桌上吃饭,但是每两个小朋友之间存在一种关系,即敌人或者朋友,然后需要让你安排一个座位次序,使得相邻的两个小朋友都不会是敌人.假设每个人最多有N-1个敌人.如果没有输出"No solution!". 思路: 如果按照题意直接建图,每个点表示一个小朋友,小朋友之间的敌对关系表示两个点之间有边.问题是求小朋友围着桌子的座次就是求图中的一个环,但是要求这个环不能包含所给出的每条边,所有没

POJ 3083 Children of the Candy Corn(顺时针DFS+逆时针DFS+BFS)

题目链接:POJ 3083 Children of the Candy Corn [题意]给出一个迷宫,不超过40*40,'#'代表墙,'.'代表能走,'S'是起点,'E'是终点.分别求出从起点一直沿左走,一直沿右走,走到终点所需要的步数.以及走出迷宫的最小步数. [思路]首先最小步数很简单,一个普通BFS搞定,这道题重点是一直向左走和一直向右走的DFS的方向问题,方向还和游客当时朝向有关.开始一直认为是每次都向左(右)转,直到可以走,然后就一直不对,在google了之后才知道向左走要遵循左上右

POJ 2438 解题报告

分析: 2*n个小朋友,每个最多有n-1个"敌人",显然是存在哈密顿回路的. 预处理边,然后找哈密顿回路. code #include <iostream> #include <cstdio> #include <algorithm> #include <cstring> #include <vector> using namespace std; #define pb push_back #define sz(a) (int

POJ 3083 -- Children of the Candy Corn(DFS+BFS)TLE

POJ 3083 -- Children of the Candy Corn(DFS+BFS) 题意: 给定一个迷宫,S是起点,E是终点,#是墙不可走,.可以走 1)先输出左转优先时,从S到E的步数 2)再输出右转优先时,从S到E的步数 3)最后输出S到E的最短步数 解题思路: 前两问DFS,转向只要控制一下旋转方向就可以 首先设置前进方向对应的数字 向上--N--0 向右--E--1 向下--S--2 向左--W--3 比如说右转优先,即为向右,向前,向左,向后,即逆时针方向for(int i

POJ 2438 哈密顿回路

Children's Dining Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4730   Accepted: 754   Special Judge Description Usually children in kindergarten like to quarrel with each other. This situation annoys the child-care women. For instant,

POJ 3083 Children of the Candy Corn

Children of the Candy Corn Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Original ID: 308364-bit integer IO format: %lld      Java class name: Main The cornfield maze is a popular Halloween treat. Visitors are shown the

POJ 3083 Children of the Candy Corn (DFS + BFS + 模拟)

题目链接:http://poj.org/problem?id=3083 题意: 这里有一个w * h的迷宫,给你入口和出口,让你分别求以下三种情况时,到达出口的步数(总步数包括入口和出口): 第一种:当你需要选择下一个位置时,总是需要这么考虑:如果当前的左方能走,那么就走左方;否则考虑前方是否能走,如果能走,那么就选前方;否则考虑右方是否能走,如果可以,就走右方.如果不能就返回上一个位置,即当前位置的后方.总结下来选择道路的优先顺序为(以当前所处方位为准) 左 -> 上(前) -> 右 -&g

POJ 3083 Children of the Candy Corn (DFS+BFS)

题目链接:http://poj.org/problem?id=3083 题目大意:给你一个迷宫,S是起点,E是终点,#是墙,.是路,S.E在迷宫的边界,并且有唯一解:求优先左转S到E的步数,优先右转S到E的步数,以及S到E的最短步数. 题解: 1.本题的难点在于左转优先以及右转优先,下一步的方向取决于当前位置的方向,用DFS不断的按优先方向遍历一遍迷宫即可:我定义如图:   前(0)   左(1) 当前位置方向(dir) 右(3)   后(2)   以左转优先为例,便利迷宫的方向依次为:左.前.

POJ 3083 Children of the Candy Corn(搜索)

Children of the Candy Corn Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10975   Accepted: 4731 Description The cornfield maze is a popular Halloween treat. Visitors are shown the entrance and must wander through the maze facing zombie