【OCR技术系列之四】基于深度学习的文字识别(3755个汉字)

上一篇提到文字数据集的合成,现在我们手头上已经得到了3755个汉字(一级字库)的印刷体图像数据集,我们可以利用它们进行接下来的3755个汉字的识别系统的搭建。用深度学习做文字识别,用的网络当然是CNN,那具体使用哪个经典网络?VGG?RESNET?还是其他?我想了下,越深的网络训练得到的模型应该会更好,但是想到训练的难度以及以后线上部署时预测的速度,我觉得首先建立一个比较浅的网络(基于LeNet的改进)做基本的文字识别,然后再根据项目需求,再尝试其他的网络结构。这次任务所使用的深度学习框架是强大的Tensorflow。

网络搭建

第一步当然是搭建网络和计算图

其实文字识别就是一个多分类任务,比如这个3755文字识别就是3755个类别的分类任务。我们定义的网络非常简单,基本就是LeNet的改进版,值得注意的是我们加入了batch normalization。另外我们的损失函数选择sparse_softmax_cross_entropy_with_logits,优化器选择了Adam,学习率设为0.1

#network: conv2d->max_pool2d->conv2d->max_pool2d->conv2d->max_pool2d->conv2d->conv2d->max_pool2d->fully_connected->fully_connected
def build_graph(top_k):
    keep_prob = tf.placeholder(dtype=tf.float32, shape=[], name=‘keep_prob‘)
    images = tf.placeholder(dtype=tf.float32, shape=[None, 64, 64, 1], name=‘image_batch‘)
    labels = tf.placeholder(dtype=tf.int64, shape=[None], name=‘label_batch‘)
    is_training = tf.placeholder(dtype=tf.bool, shape=[], name=‘train_flag‘)
    with tf.device(‘/gpu:5‘):
        #给slim.conv2d和slim.fully_connected准备了默认参数:batch_norm
        with slim.arg_scope([slim.conv2d, slim.fully_connected],
                            normalizer_fn=slim.batch_norm,
                            normalizer_params={‘is_training‘: is_training}):
            conv3_1 = slim.conv2d(images, 64, [3, 3], 1, padding=‘SAME‘, scope=‘conv3_1‘)
            max_pool_1 = slim.max_pool2d(conv3_1, [2, 2], [2, 2], padding=‘SAME‘, scope=‘pool1‘)
            conv3_2 = slim.conv2d(max_pool_1, 128, [3, 3], padding=‘SAME‘, scope=‘conv3_2‘)
            max_pool_2 = slim.max_pool2d(conv3_2, [2, 2], [2, 2], padding=‘SAME‘, scope=‘pool2‘)
            conv3_3 = slim.conv2d(max_pool_2, 256, [3, 3], padding=‘SAME‘, scope=‘conv3_3‘)
            max_pool_3 = slim.max_pool2d(conv3_3, [2, 2], [2, 2], padding=‘SAME‘, scope=‘pool3‘)
            conv3_4 = slim.conv2d(max_pool_3, 512, [3, 3], padding=‘SAME‘, scope=‘conv3_4‘)
            conv3_5 = slim.conv2d(conv3_4, 512, [3, 3], padding=‘SAME‘, scope=‘conv3_5‘)
            max_pool_4 = slim.max_pool2d(conv3_5, [2, 2], [2, 2], padding=‘SAME‘, scope=‘pool4‘)

            flatten = slim.flatten(max_pool_4)
            fc1 = slim.fully_connected(slim.dropout(flatten, keep_prob), 1024,
                                       activation_fn=tf.nn.relu, scope=‘fc1‘)
            logits = slim.fully_connected(slim.dropout(fc1, keep_prob), FLAGS.charset_size, activation_fn=None,
                                          scope=‘fc2‘)
        # 因为我们没有做热编码,所以使用sparse_softmax_cross_entropy_with_logits
        loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels))
        accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits, 1), labels), tf.float32))

        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        if update_ops:
            updates = tf.group(*update_ops)
            loss = control_flow_ops.with_dependencies([updates], loss)

        global_step = tf.get_variable("step", [], initializer=tf.constant_initializer(0.0), trainable=False)
        optimizer = tf.train.AdamOptimizer(learning_rate=0.1)
        train_op = slim.learning.create_train_op(loss, optimizer, global_step=global_step)
        probabilities = tf.nn.softmax(logits)

        # 绘制loss accuracy曲线
        tf.summary.scalar(‘loss‘, loss)
        tf.summary.scalar(‘accuracy‘, accuracy)
        merged_summary_op = tf.summary.merge_all()
        # 返回top k 个预测结果及其概率;返回top K accuracy
        predicted_val_top_k, predicted_index_top_k = tf.nn.top_k(probabilities, k=top_k)
        accuracy_in_top_k = tf.reduce_mean(tf.cast(tf.nn.in_top_k(probabilities, labels, top_k), tf.float32))

    return {‘images‘: images,
            ‘labels‘: labels,
            ‘keep_prob‘: keep_prob,
            ‘top_k‘: top_k,
            ‘global_step‘: global_step,
            ‘train_op‘: train_op,
            ‘loss‘: loss,
            ‘is_training‘: is_training,
            ‘accuracy‘: accuracy,
            ‘accuracy_top_k‘: accuracy_in_top_k,
            ‘merged_summary_op‘: merged_summary_op,
            ‘predicted_distribution‘: probabilities,
            ‘predicted_index_top_k‘: predicted_index_top_k,
            ‘predicted_val_top_k‘: predicted_val_top_k}

模型训练

训练之前我们应设计好数据怎么样才能高效地喂给网络训练。

首先,我们先创建数据流图,这个数据流图由一些流水线的阶段组成,阶段间用队列连接在一起。第一阶段将生成文件名,我们读取这些文件名并且把他们排到文件名队列中。第二阶段从文件中读取数据(使用Reader),产生样本,而且把样本放在一个样本队列中。根据你的设置,实际上也可以拷贝第二阶段的样本,使得他们相互独立,这样就可以从多个文件中并行读取。在第二阶段的最后是一个排队操作,就是入队到队列中去,在下一阶段出队。因为我们是要开始运行这些入队操作的线程,所以我们的训练循环会使得样本队列中的样本不断地出队。

盗个图说明一下具体的数据读入流程:

入队操作都在主线程中进行,Session中可以多个线程一起运行。 在数据输入的应用场景中,入队操作是从硬盘中读取输入,放到内存当中,速度较慢。 使用QueueRunner可以创建一系列新的线程进行入队操作,让主线程继续使用数据。如果在训练神经网络的场景中,就是训练网络和读取数据是异步的,主线程在训练网络,另一个线程在将数据从硬盘读入内存。

# batch的生成
def input_pipeline(self, batch_size, num_epochs=None, aug=False):
    # numpy array 转 tensor
    images_tensor = tf.convert_to_tensor(self.image_names, dtype=tf.string)
    labels_tensor = tf.convert_to_tensor(self.labels, dtype=tf.int64)
    # 将image_list ,label_list做一个slice处理
    input_queue = tf.train.slice_input_producer([images_tensor, labels_tensor], num_epochs=num_epochs)

    labels = input_queue[1]
    images_content = tf.read_file(input_queue[0])
    images = tf.image.convert_image_dtype(tf.image.decode_png(images_content, channels=1), tf.float32)
    if aug:
        images = self.data_augmentation(images)
    new_size = tf.constant([FLAGS.image_size, FLAGS.image_size], dtype=tf.int32)
    images = tf.image.resize_images(images, new_size)
    image_batch, label_batch = tf.train.shuffle_batch([images, labels], batch_size=batch_size, capacity=50000,
                                                      min_after_dequeue=10000)
    # print ‘image_batch‘, image_batch.get_shape()
    return image_batch, label_batch

训练时数据读取的模式如上面所述,那训练代码则根据该架构设计如下:

def train():
    print(‘Begin training‘)
    # 填好数据读取的路径
    train_feeder = DataIterator(data_dir=‘./dataset/train/‘)
    test_feeder = DataIterator(data_dir=‘./dataset/test/‘)
    model_name = ‘chinese-rec-model‘
    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True)) as sess:
        # batch data 获取
        train_images, train_labels = train_feeder.input_pipeline(batch_size=FLAGS.batch_size, aug=True)
        test_images, test_labels = test_feeder.input_pipeline(batch_size=FLAGS.batch_size)
        graph = build_graph(top_k=1)  # 训练时top k = 1
        saver = tf.train.Saver()
        sess.run(tf.global_variables_initializer())
        # 设置多线程协调器
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)

        train_writer = tf.summary.FileWriter(FLAGS.log_dir + ‘/train‘, sess.graph)
        test_writer = tf.summary.FileWriter(FLAGS.log_dir + ‘/val‘)
        start_step = 0
        # 可以从某个step下的模型继续训练
        if FLAGS.restore:
            ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
            if ckpt:
                saver.restore(sess, ckpt)
                print("restore from the checkpoint {0}".format(ckpt))
                start_step += int(ckpt.split(‘-‘)[-1])

        logger.info(‘:::Training Start:::‘)
        try:
            i = 0
            while not coord.should_stop():
                i += 1
                start_time = time.time()
                train_images_batch, train_labels_batch = sess.run([train_images, train_labels])
                feed_dict = {graph[‘images‘]: train_images_batch,
                             graph[‘labels‘]: train_labels_batch,
                             graph[‘keep_prob‘]: 0.8,
                             graph[‘is_training‘]: True}
                _, loss_val, train_summary, step = sess.run(
                    [graph[‘train_op‘], graph[‘loss‘], graph[‘merged_summary_op‘], graph[‘global_step‘]],
                    feed_dict=feed_dict)
                train_writer.add_summary(train_summary, step)
                end_time = time.time()
                logger.info("the step {0} takes {1} loss {2}".format(step, end_time - start_time, loss_val))
                if step > FLAGS.max_steps:
                    break
                if step % FLAGS.eval_steps == 1:
                    test_images_batch, test_labels_batch = sess.run([test_images, test_labels])
                    feed_dict = {graph[‘images‘]: test_images_batch,
                                 graph[‘labels‘]: test_labels_batch,
                                 graph[‘keep_prob‘]: 1.0,
                                 graph[‘is_training‘]: False}
                    accuracy_test, test_summary = sess.run([graph[‘accuracy‘], graph[‘merged_summary_op‘]],
                                                           feed_dict=feed_dict)
                    if step > 300:
                        test_writer.add_summary(test_summary, step)
                    logger.info(‘===============Eval a batch=======================‘)
                    logger.info(‘the step {0} test accuracy: {1}‘
                                .format(step, accuracy_test))
                    logger.info(‘===============Eval a batch=======================‘)
                if step % FLAGS.save_steps == 1:
                    logger.info(‘Save the ckpt of {0}‘.format(step))
                    saver.save(sess, os.path.join(FLAGS.checkpoint_dir, model_name),
                               global_step=graph[‘global_step‘])
        except tf.errors.OutOfRangeError:
            logger.info(‘==================Train Finished================‘)
            saver.save(sess, os.path.join(FLAGS.checkpoint_dir, model_name), global_step=graph[‘global_step‘])
        finally:
            # 达到最大训练迭代数的时候清理关闭线程
            coord.request_stop()
        coord.join(threads)

执行以下指令进行模型训练。因为我使用的是TITAN X,所以感觉训练时间不长,大概1个小时可以训练完毕。训练过程的loss和accuracy变换曲线如下图所示

然后执行指令,设置最大迭代步数为16002,每100步进行一次验证,每500步存储一次模型。

python Chinese_OCR.py --mode=train --max_steps=16002 --eval_steps=100 --save_steps=500

模型性能评估

我们的需要对模模型进行评估,我们需要计算模型的top 1 和top 5的准确率。

执行指令

python Chinese_OCR.py --mode=validation

验证开始

最后给出预测的top1 和top5正确率如下:

def validation():
    print(‘Begin validation‘)
    test_feeder = DataIterator(data_dir=‘./dataset/test/‘)

    final_predict_val = []
    final_predict_index = []
    groundtruth = []

    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,allow_soft_placement=True)) as sess:
        test_images, test_labels = test_feeder.input_pipeline(batch_size=FLAGS.batch_size, num_epochs=1)
        graph = build_graph(top_k=5)
        saver = tf.train.Saver()

        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())  # initialize test_feeder‘s inside state

        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)

        ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
        if ckpt:
            saver.restore(sess, ckpt)
            print("restore from the checkpoint {0}".format(ckpt))

        logger.info(‘:::Start validation:::‘)
        try:
            i = 0
            acc_top_1, acc_top_k = 0.0, 0.0
            while not coord.should_stop():
                i += 1
                start_time = time.time()
                test_images_batch, test_labels_batch = sess.run([test_images, test_labels])
                feed_dict = {graph[‘images‘]: test_images_batch,
                             graph[‘labels‘]: test_labels_batch,
                             graph[‘keep_prob‘]: 1.0,
                             graph[‘is_training‘]: False}
                batch_labels, probs, indices, acc_1, acc_k = sess.run([graph[‘labels‘],
                                                                       graph[‘predicted_val_top_k‘],
                                                                       graph[‘predicted_index_top_k‘],
                                                                       graph[‘accuracy‘],
                                                                       graph[‘accuracy_top_k‘]], feed_dict=feed_dict)
                final_predict_val += probs.tolist()
                final_predict_index += indices.tolist()
                groundtruth += batch_labels.tolist()
                acc_top_1 += acc_1
                acc_top_k += acc_k
                end_time = time.time()
                logger.info("the batch {0} takes {1} seconds, accuracy = {2}(top_1) {3}(top_k)"
                            .format(i, end_time - start_time, acc_1, acc_k))

        except tf.errors.OutOfRangeError:
            logger.info(‘==================Validation Finished================‘)
            acc_top_1 = acc_top_1 * FLAGS.batch_size / test_feeder.size
            acc_top_k = acc_top_k * FLAGS.batch_size / test_feeder.size
            logger.info(‘top 1 accuracy {0} top k accuracy {1}‘.format(acc_top_1, acc_top_k))
        finally:
            coord.request_stop()
        coord.join(threads)
    return {‘prob‘: final_predict_val, ‘indices‘: final_predict_index, ‘groundtruth‘: groundtruth}

文字预测

刚刚做的那一步只是使用了我们生成的数据集作为测试集来检验模型性能,这种检验是不大准确的,因为我们日常需要识别的文字样本不会像是自己合成的文字那样的稳定和规则。那我们尝试使用该模型对一些实际场景的文字进行识别,真正考察模型的泛化能力。

首先先编写好预测的代码

def inference(name_list):
    print(‘inference‘)
    image_set=[]
    # 对每张图进行尺寸标准化和归一化
    for image in name_list:
        temp_image = Image.open(image).convert(‘L‘)
        temp_image = temp_image.resize((FLAGS.image_size, FLAGS.image_size), Image.ANTIALIAS)
        temp_image = np.asarray(temp_image) / 255.0
        temp_image = temp_image.reshape([-1, 64, 64, 1])
        image_set.append(temp_image)

    # allow_soft_placement 如果你指定的设备不存在,允许TF自动分配设备
    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,allow_soft_placement=True)) as sess:
        logger.info(‘========start inference============‘)
        # images = tf.placeholder(dtype=tf.float32, shape=[None, 64, 64, 1])
        # Pass a shadow label 0. This label will not affect the computation graph.
        graph = build_graph(top_k=3)
        saver = tf.train.Saver()
        # 自动获取最后一次保存的模型
        ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
        if ckpt:
            saver.restore(sess, ckpt)
        val_list=[]
        idx_list=[]
        # 预测每一张图
        for item in image_set:
            temp_image = item
            predict_val, predict_index = sess.run([graph[‘predicted_val_top_k‘], graph[‘predicted_index_top_k‘]],
                                              feed_dict={graph[‘images‘]: temp_image,
                                                         graph[‘keep_prob‘]: 1.0,
                                                         graph[‘is_training‘]: False})
            val_list.append(predict_val)
            idx_list.append(predict_index)
    #return predict_val, predict_index
    return val_list,idx_list

这里需要说明一下,我会把我要识别的文字图像存入一个叫做tmp的文件夹内,里面的图像按照顺序依次编号,我们识别时就从该目录下读取所有图片仅内存进行逐一识别。

# 获待预测图像文件夹内的图像名字
def get_file_list(path):
    list_name=[]
    files = os.listdir(path)
    files.sort()
    for file in files:
        file_path = os.path.join(path, file)
        list_name.append(file_path)
    return list_name

那我们使用训练好的模型进行汉字预测,观察效果。首先我从一篇论文pdf上用截图工具截取了一段文字,然后使用文字切割算法把文字段落切割为单字,如下图,因为有少量文字切割失败,所以丢弃了一些单字。

从论文中用截图工具截取文字段落。

切割出来的单字,黑底白字。

执行指令,开始文字识别。

 python Chinese_OCR.py --mode=inference 

因为我使用的是GPU,预测速度非常快,除去系统初始化时间,全部图像预测完成所花费的时间不超过1秒。

其中打印日志的信息分别是:当前识别的图片路径、模型预测出的top 3汉字(置信度由高到低排列)、对应的汉字id、对应的概率。

最后将所有的识别文字按顺序组合成段落,可以看出,汉字识别完全正确,说明我们的基于深度学习的OCR系统还是相当给力!

总结

至此,支持3755个汉字识别的OCR系统已经搭建完毕,经过测试,效果还是很不错。这是一个没有经过太多优化的模型,在模型评估上top 1的正确率达到了99.9%,这是一个相当优秀的效果了,所以说在一些比较理想的环境下的文字识别的效果还是比较给力,但是对于复杂场景的或是一些干扰比较大的文字图像,识别起来的效果可能不会太理想,这就需要针对特定场景做进一步优化。

完整代码在我的github获取。

原文地址:https://www.cnblogs.com/skyfsm/p/8443107.html

时间: 2024-10-17 07:23:29

【OCR技术系列之四】基于深度学习的文字识别(3755个汉字)的相关文章

目标检测梳理:基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN(转)

基于深度学习的目标检测技术演进:R-CNN.Fast R-CNN.Faster R-CNN(转) 原文链接:https://www.cnblogs.com/skyfsm/p/6806246.html object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.object detection要解决的问题就是物体在哪里,是什么这整个流程的问题.然而,这个问题可不是那么容易解决的,物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方

基于深度学习的图像语义分割技术概述之背景与深度网络架构

图像语义分割正在逐渐成为计算机视觉及机器学习研究人员的研究热点.大量应用需要精确.高效的分割机制,如:自动驾驶.室内导航.及虚拟/增强现实系统.这种需求与机器视觉方面的深度学习领域的目标一致,包括语义分割或场景理解.本文对多种应用领域语义分割的深度学习方法进行概述.首先,我们给出本领域的术语及主要背景知识.其次,介绍主要的数据集及难点,以帮助研究人员找到合适的数据集和研究目标.之后,概述现有方法,及其贡献.最后,给出提及方法的量化标准及其基于的数据集,接着是对于结果的讨论.最终,对于基于深度学习

将深度学习技术应用于基于情境感知的情绪识别

目录 本分享为脑机学习者Rose整理发表于公众号:脑机接口社区(微信号:Brain_Computer).QQ交流群:903290195 延世大学和洛桑联邦理工学院(EPFL)的研究团队最近开发了一种新的技术,可以通过分析图像中的人脸和上下文特征来识别情绪.他们在arXiv上预先发表的一篇论文中介绍并概述了他们基于深度学习的架构,称为CAER-Net. 近年来,世界各地的研究人员一直在尝试开发通过分析图像.视频或音频剪辑来自动检测人类情绪的工具.这些工具可以有许多应用,例如,改善人机交互或帮助医生

基于深度学习的目标检测

普通的深度学习监督算法主要是用来做分类,如图1(1)所示,分类的目标是要识别出图中所示是一只猫.而在ILSVRC(ImageNet Large Scale Visual Recognition Challenge)竞赛以及实际的应用中,还包括目标定位和目标检测等任务.其中目标定位是不仅仅要识别出来是什么物体(即分类),而且还要预测物体的位置,位置一般用边框(bounding box)标记,如图1(2)所示.而目标检测实质是多目标的定位,即要在图片中定位多个目标物体,包括分类和定位.比如对图1(3

4. 基于深度学习的目标检测算法的综述(转)

4. 基于深度学习的目标检测算法的综述(转) 原文链接:https://www.cnblogs.com/zyly/p/9250195.html 目录 一 相关研究 1.选择性搜索(Selective Search) 2.OverFeat 二.基于区域提名的方法 1.R-CNN 2.SPP-Net 3.Fast R-CNN 4.Faster R-CNN 5.R-FCN 三 端对端的方法 1.YOLO 2.SSD 四 总结 在前面几节中,我们已经介绍了什么是目标检测,以及如何进行目标检测,还提及了滑

【深度学习系列1】 深度学习在腾讯的平台化和应用实践(转载)

转载:原文链接 [深度学习系列1] 深度学习在腾讯的平台化和应用实践 引言:深度学习是近年机器学习领域的重大突破,有着广泛的应用前景.随着Google公开 Google Brain计划,业界对深度学习的热情高涨.腾讯在深度学习领域持续投入,获得了实际落地的产出.我们准备了四篇文章,阐述深度学习的原理和在腾讯的实 践,介绍腾讯深度学习平台Mariana,本文为第一篇. 深度学习(Deep Learning)是近年来机器学习领域的热点,在语音识别.图像识别等领域均取得了突破性进展.腾讯提供广泛的互联

【深度学习系列4】深度学习及并行化实现概述

[深度学习系列4]深度学习及并行化实现概述 摘要: 深度学习可以完成需要高度抽象特征的人工智能任务,如语音识别.图像识别和检索.自然语言理解等.深层模型是包含多个隐藏层的人工神经网络,多层非线性结构使其具备强大的特征表达能力和对复杂任务建模能力.训练深层模型是长期以来的难题,近年来以层次化.逐层初始化为代表的一系列方法的提出给训练深层模型带来了希望,并在多个应用领域获得了成功.深层模型的并行化框架和训练加速方法是深度学习走向实用的重要基石,已有多个针对不同深度模型的开源实现,Google.Fac

【OCR技术系列之一】字符识别技术总览

最近入坑研究OCR,看了比较多关于OCR的资料,对OCR的前世今生也有了一个比较清晰的了解.所以想写一篇关于OCR技术的综述,对OCR相关的知识点都好好总结一遍,以加深个人理解. 什么是OCR? OCR英文全称是Optical Character Recognition,中文叫做光学字符识别.它是利用光学技术和计算机技术把印在或写在纸上的文字读取出来,并转换成一种计算机能够接受.人又可以理解的格式.文字识别是计算机视觉研究领域的分支之一,而且这个课题已经是比较成熟了,并且在商业中已经有很多落地项

第二十八节、基于深度学习的目标检测算法的综述

在前面几节中,我们已经介绍了什么是目标检测,以及如何进行目标检测,还提及了滑动窗口,bounding box.以及IOU,非极大值抑制等概念. 这里将会综述一下当前目标检测的研究成果,并对几个经典的目标检测算法进行概述,本文内容来自基于深度学习的目标检测,在后面几节里,会具体讲解每一种方法. 在深度度学习的目标检测算法兴起之前,传统的目标检测算法是怎样的呢? 传统的目标检测一般使用滑动窗口的框架,主要包括三个步骤: 利用不同尺寸的滑动窗口框住图中的某一部分作为候选区域: 提取候选区域相关的视觉特