hdu 1024 Max Sum Plus Plus 小白都可以看得懂的解析

这道题弄了很久,网上的很多都看不懂,所以想要写一个像我这种菜鸟都可以看得懂的解析。



题意是将一个长度为n的序列,分成m段不相交叉的子段,使得他们的和最大。

于是可以用dp[i][j]来表示在前j个数中,以num[j]结尾并分为i段的最大和。此时我们可以得出一个式子,dp[i][j]=max(dp[i-1][k]+a[j],dp[i][j-1]+a[j])  (i-1< k< j-1)。分别表示num[j]单独成段和num[j]加入以num[j-1]结尾的一段。

现在举一个例子,序列为-1,4,-2,3,-2,3。

现在可以结合图标来理解式子的意思了,例如dp[2][4]=max(max(-1,4,2,) , 2)+num[4]=7

也就是说计算dp[i][j]只用到了2层的数据,上一层的数据我们只用到了其中的最大值,于是在求dp[j]时,我们可以用premax[]来记录i~j的最大值,在下一层时使用。

为什么i=n时,从第n位开始有值呢?因为这是每个数字自己单独成一段的情况,是满足分成n段的必要条件。

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=1000000;
int num[maxn],premax[maxn],dp[maxn];
int main(){
    int n,m,temp;
    while(~scanf("%d %d",&m,&n)){
        for(int i=1;i<=n;i++)    scanf("%d",&num[i]);
        memset(dp,0,sizeof(dp));
        memset(premax,0,sizeof(premax));
        for(int i=1;i<=m;i++){
            temp=-1e9;
            for(int j=i;j<=n;j++){
                dp[j]=max(premax[j-1],dp[j-1])+num[j];
                premax[j-1]=temp;//temp存放的是i~j-1中的最大值
                temp=max(temp,dp[j]);
            }
        }
        printf("%d\n",temp);
    }
    return 0;
}

原文地址:http://blog.51cto.com/13688928/2117013

时间: 2024-10-07 19:25:33

hdu 1024 Max Sum Plus Plus 小白都可以看得懂的解析的相关文章

HDU 1024 Max Sum Plus Plus --- dp+滚动数组

HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值,其中第i个子序列包括a[j], 则max(dp[m][k]),m<=k<=n 即为所求的结果 <2>初始状态: dp[i][0] = 0, dp[0][j] = 0; <3>状态转移: 决策:a[j]自己成为一个子段,还是接在前面一个子段的后面 方程: a[j]直接接在前面

HDU 1024 Max Sum Plus Plus Dp题解

本题就是求m段子段,而且要求这些子段加起来和最大,最大子段和的Plus版本. 不过题意真的不好理解,x,y什么的都没有说清楚. 知道题意就开始解题了,这肯定是动态规划法了. 动态规划法的程序不难写,关键是抽象思维. 这里的最小情况是只分成一段的时候,就退化为最大子段和问题了,这个是段数的最小情况了: 如果只有0个数的时候,结果肯定为零了,或者如果只有一个数的时候就是这个数了,那么数列只有0个或者1个的时候就是数组的最小情况了. 然后记录使用一个数组记录dp[MAX_N],其中dp[i]的含义就是

[2016-03-28][HDU][1024][Max Sum Plus Plus]

时间:2016-03-28 17:45:33 星期一 题目编号:[2016-03-28][HDU][1024][Max Sum Plus Plus] 题目大意:从n个数字提取出一定数字组成m个部分,使得这个部分的总和最大 分析: dp[i][j]表示前i段计算第j个数字,dp[i][j] = max(dp[i - 1][j - 1] + a[j],dp[i][k] + a[j]); #include <algorithm> #include <cstring> #include &

Hdu 1024 Max Sum Plus Plus (dp)

题目链接: Hdu 1024 Max Sum Plus Plus 题目描述: 给出n个数,问m段连续子序列的和相加最大是多少? 解题思路: dp[i][j]表示把前i个元素(包括第i个),分成j段的最大和.状态转移方程就是dp[i][j] = max (dp[i-1][j] + arr[j],  max( dp[k][j-1]) + arr[j]),其中0<k<i.(第i个元素是保存在第j段,还是自己单独成段) 由于1<=n<=1000,000.n*n的数组肯定会爆炸,所以要对方程

hdu 1024 Max Sum Plus Plus(DP)

转移方程dp[i][j]=Max(dp[i][j-1]+a[j],max(dp[i-1][k] ) + a[j] ) 0<k<j 此链接中有详解点击打开链接 #include<stdio.h> #include<algorithm> #include<iostream> using namespace std; #define MAXN 1000000 #define INF 0x7fffffff int dp[MAXN+10]; int mmax[MAXN

HDU 1024 Max Sum Plus Plus

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1024 Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 21926    Accepted Submission(s): 7342 Problem Description Now I think you ha

HDU 1024 Max Sum Plus Plus【动态规划求最大M子段和详解 】

Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 29942    Accepted Submission(s): 10516 Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem

HDU 1024 Max Sum Plus Plus 动态规划

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1024 题目大意:n个数分成两两不相交的m段,求使这m段和的最大值. 解题思路:比较坑的点:n2 能过:long long超时,int AC. dp[i][j]:= 在选择第i个数的情况下前i个数分成j段的最大值dp[i][j] = max(dp[i - 1][j] + a[i], max(dp[x][j - 1] -> dp[x][j - 1]) + a[i]) x < i 由于n<1000

hdu 1024 MAX Sum Plus Plus【dp】

hdu 1024 题意:给定序列,求找出m个子序列的和使它们最大,子序列无交叉. 题解:又是最大子序列和增强版.但是这回让找m个,我还是没有思路.网上看到的思路无一例外都是: dp[i][j]表示前j个数分成i个子序列能获得的最大值.它有两大部分转移过来,一个是j是第i个序列的首元素,则dp[i][j]由dp[i-1][t]转移过来,即前t个数分成i-1个子序列:另一种自然就是第j个数不是第i个子序列的首元素,所以由前j-1个数分成i个子序列的状态dp[i][j-1]转移过来.但是数据很大,二维