4568: [Scoi2016]幸运数字
Time Limit: 60 Sec Memory Limit: 256 MB
Submit: 2131 Solved: 865
[Submit][Status][Discuss]Description
A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一。每座城市都有一个
幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的象征。一些旅行者希望游览 A 国。旅行者计划
乘飞机降落在 x 号城市,沿着 x 号城市到 y 号城市之间那条唯一的路径游览,最终从 y 城市起飞离开 A 国。
在经过每一座城市时,游览者就会有机会与这座城市的幸运数字拍照,从而将这份幸运保存到自己身上。然而,幸
运是不能简单叠加的,这一点游览者也十分清楚。他们迷信着幸运数字是以异或的方式保留在自己身上的。例如,
游览者拍了 3 张照片,幸运值分别是 5,7,11,那么最终保留在自己身上的幸运值就是 9(5 xor 7 xor 11)。
有些聪明的游览者发现,只要选择性地进行拍照,便能获得更大的幸运值。例如在上述三个幸运值中,只选择 5
和 11 ,可以保留的幸运值为 14 。现在,一些游览者找到了聪明的你,希望你帮他们计算出在他们的行程安排中
可以保留的最大幸运值是多少。
Input
第一行包含 2 个正整数 n ,q,分别表示城市的数量和旅行者数量。第二行包含 n 个非负整数,其中第 i 个整
数 Gi 表示 i 号城市的幸运值。随后 n-1 行,每行包含两个正整数 x ,y,表示 x 号城市和 y 号城市之间有一
条道路相连。随后 q 行,每行包含两个正整数 x ,y,表示这名旅行者的旅行计划是从 x 号城市到 y 号城市。N
<=20000,Q<=200000,Gi<=2^60
Output
输出需要包含 q 行,每行包含 1 个非负整数,表示这名旅行者可以保留的最大幸运值。
Sample Input
4 2
11 5 7 9
1 2
1 3
1 4
2 3
1 4Sample Output
14
11HINT
Source
线性基不支持删除,但是支持插入与合并,于是显然可以树剖维护,$O(n\log^4n)$。
线性基不支持修改,浪费了线段树支持修改的功能,实际上可以直接用不支持修改的ST表,$O(n\log^3n)$。
点分治不仅可以做路径统计问题,还可以处理与路径有关的询问问题,将每个询问的两个点的vector中放入这个询问,每次递归到一个重心时查找管辖范围内的所有询问,因为一个询问只涉及两个点,所以复杂度是有保证的。$O(n\log^2n)$
下面是倍增LCA的代码,要注意关于点的LCA和普通的是有区别的:
1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 #define rep(i,l,r) for (int i=l; i<=r; i++) 5 typedef long long ll; 6 using namespace std; 7 8 const int N=20100,M=62; 9 ll g[N][16][M],Ans[M],a[N]; 10 int n,Q,u,v,cnt,to[N<<1],nxt[N<<1],h[N],d[N],fa[N][16]; 11 12 void add(int u,int v){ to[++cnt]=v; nxt[cnt]=h[u]; h[u]=cnt; } 13 void ins(ll p[],ll x){ 14 for (int i=61; ~i; i--) if (x&(1ll<<i)){ 15 if (!p[i]) { p[i]=x; break; } else x^=p[i]; 16 } 17 } 18 void merge(ll g[],ll f1[],ll f2[]){ 19 rep(i,0,61) g[i]=f1[i]; 20 rep(i,0,61) if (f2[i]) ins(g,f2[i]); 21 } 22 void dfs(int x){ 23 ins(g[x][0],a[x]); 24 rep(i,1,15){ 25 fa[x][i]=fa[fa[x][i-1]][i-1]; 26 merge(g[x][i],g[x][i-1],g[fa[x][i-1]][i-1]); 27 } 28 for (int i=h[x],k; i; i=nxt[i]) 29 if ((k=to[i])!=fa[x][0]) fa[k][0]=x,d[k]=d[x]+1,dfs(k); 30 } 31 32 void lca(int u,int v){ 33 memset(Ans,0,sizeof(Ans)); 34 if (d[u]<d[v]) swap(u,v); 35 int t=d[u]-d[v]; 36 for (int i=15; ~i; i--) 37 if (t&(1<<i)) merge(Ans,Ans,g[u][i]),u=fa[u][i]; 38 if (u==v){ merge(Ans,Ans,g[u][0]); return; } 39 for (int i=15; ~i; i--) 40 if (fa[u][i]!=fa[v][i]) 41 merge(Ans,Ans,g[u][i]),merge(Ans,Ans,g[v][i]), 42 u=fa[u][i],v=fa[v][i]; 43 merge(Ans,Ans,g[u][0]); merge(Ans,Ans,g[v][0]); 44 merge(Ans,Ans,g[fa[u][0]][0]); 45 } 46 47 ll get(ll p[]){ 48 ll res=0; 49 for (int i=61; ~i; i--) res=max(res,res^p[i]); 50 return res; 51 } 52 53 int main(){ 54 freopen("bzoj4568.in","r",stdin); 55 freopen("bzoj45682.out","w",stdout); 56 scanf("%d%d",&n,&Q); 57 rep(i,1,n) scanf("%lld",&a[i]); 58 rep(i,2,n) scanf("%d%d",&u,&v),add(u,v),add(v,u); 59 dfs(1); 60 while (Q--) scanf("%d%d",&u,&v),lca(u,v),printf("%lld\n",get(Ans)); 61 return 0; 62 }
然后是点分治,本机时间跑的是倍增的一半,交到OJ上就莫名其妙的死活TLE,弃疗。
1 #include<cstdio> 2 #include<cstring> 3 #include<vector> 4 #include<algorithm> 5 #define rep(i,l,r) for (int i=l; i<=r; i++) 6 #define For(i,x) for (int i=h[x],k; i; i=nxt[i]) 7 typedef long long ll; 8 using namespace std; 9 10 const int N=20010,M=200010,inf=1000000000; 11 int n,Q,u,v,cnt,S,rt,tim,pos[N],f[N],b[N],sz[N],vis[N],d[N]; 12 int fa[N][16],h[N],to[N<<1],nxt[N<<1]; 13 ll a[N],g[N][65],Ans[65],ans[M]; 14 struct P{ int u,v; }s[M]; 15 vector<int>V[N]; 16 void add(int u,int v){ to[++cnt]=v; nxt[cnt]=h[u]; h[u]=cnt; } 17 18 void ins(ll p[],ll x){ 19 for (int i=60; ~i; i--) if (x&(1ll<<i)){ 20 if (!p[i]) { p[i]=x; break; } else x^=p[i]; 21 } 22 } 23 24 void merge(ll g[],ll f1[],ll f2[]){ 25 rep(i,0,60) g[i]=f1[i]; 26 rep(i,0,60) if (f2[i]) ins(g,f2[i]); 27 } 28 29 ll get(ll p[]){ 30 ll res=0; 31 for (int i=60; ~i; i--) res=max(res,res^p[i]); 32 return res; 33 } 34 35 void find(int x,int fa){ 36 f[x]=0; sz[x]=1; 37 For(i,x) if ((k=to[i])!=fa && !vis[k]) 38 find(k,x),sz[x]+=sz[k],f[x]=max(f[x],sz[k]); 39 f[x]=max(f[x],S-sz[x]); 40 if (f[x]<f[rt]) rt=x; 41 } 42 43 void work(int x,int fa,int bel){ 44 pos[x]=bel; b[x]=tim; 45 rep(i,0,60) g[x][i]=g[fa][i]; ins(g[x],a[x]); 46 For(i,x) if ((k=to[i])!=fa && !vis[k]) work(k,x,bel); 47 } 48 49 void work1(int x,int fa){ 50 for (vector<int>::iterator it=V[x].begin(); it!=V[x].end(); it++){ 51 int k=*it; if (ans[k]) continue; 52 int u=s[k].u; if (u==x) u=s[k].v; 53 if (b[u]==tim && (pos[u]!=pos[x] || !pos[u])) 54 merge(Ans,g[u],g[x]),ans[k]=get(Ans); 55 } 56 For(i,x) if ((k=to[i])!=fa && !vis[k]) work1(k,x); 57 } 58 59 void solve(int x){ 60 vis[x]=1; b[x]=++tim; pos[x]=0; 61 rep(i,0,60) g[x][i]=0; ins(g[x],a[x]); 62 For(i,x) if (!vis[k=to[i]]) work(k,x,k); work1(x,0); 63 For(i,x) if (!vis[k=to[i]]) S=sz[k],f[rt=0]=inf,find(k,x),solve(k); 64 } 65 66 int main(){ 67 freopen("bzoj4568.in","r",stdin); 68 freopen("bzoj4568.out","w",stdout); 69 scanf("%d%d",&n,&Q); 70 rep(i,1,n) scanf("%lld",&a[i]); 71 rep(i,2,n) scanf("%d%d",&u,&v),add(u,v),add(v,u); 72 rep(i,1,Q) scanf("%d%d",&s[i].u,&s[i].v),V[s[i].u].push_back(i),V[s[i].v].push_back(i); 73 f[rt=0]=inf; S=n; find(1,0); solve(rt); 74 rep(i,1,Q) printf("%lld\n",ans[i]); 75 return 0; 76 }
原文地址:https://www.cnblogs.com/HocRiser/p/8979005.html