[算法]——汉诺塔的递归深度

今天早晨在上班的路上,一好朋友突然提到之前的一个计算机的考题,汉诺塔(相信大家都玩过)的递归深度。

由于很久没有看算法,以及脑容量有限,当时没有多想。

来到公司后,把公式列了一下,终于清晰多了。

下面假设3根柱子编号为1,2,3.

主要思路:

把n个圆盘从3号移到1号 = 把n-1个圆盘从3号移到2号 + 把第n个圆盘从3号移到1号 + n-1个圆盘从2号移到1号

列出公式:

f(n) = f(n-1) + 1 + f(n-1) = 2f(n-1) + 1

计算公式:

接下来就是数学题了, 利用等比数列。

并且f(1) = 1,因为移动一个圆盘

f(n) = 2*f(n-1) + 1
      = 2*(2f(n-2) + 1) + 1
      = 2^2f(n-2) + 1 + 2
      = ...
      = 2^(n-1)f(1) + 1 + 2^2 + 2^3 + ... + 2^(n-2)
      = 2^(n-1) + 2^(n-1) - 1
      = 2^n - 1

看来平时还是要经常看下算法方面的书籍,要不就像初高中知识一样被遗忘了。

时间: 2024-10-13 06:18:39

[算法]——汉诺塔的递归深度的相关文章

从"汉诺塔"经典递归到JS递归函数

前言 参考<JavaScript语言精粹> 递归是一种强大的编程技术,他把一个问题分解为一组相似的子问题,每一问题都用一个寻常解去解决.递归函数就是会直接或者间接调用自身的一种函数,一般来说,一个递归函数调用自身去解决它的子问题. "汉诺塔"经典递归问题 "汉诺塔"是印度的一个古老传说,也是程序设计中的经典的递归问题,是一个著名的益智游戏: 题目如下: 塔上有三根柱子和一套直径各不相同的空心圆盘,开始时源柱子上的所有圆盘都按从大到小的顺序排列.目标是通过

汉诺塔问题递归算法分析

汉诺塔问题递归算法分析: 一个庙里有三个柱子,第一个有64个盘子,从上往下盘子越来越大.要求庙里的老和尚把这64个盘子全部移动到第三个柱子上.移动的时候始终只能小盘子压着大盘子.而且每次只能移动一个. 1.此时老和尚(后面我们叫他第一个和尚)觉得很难,所以他想:要是有一个人能把前63个盘子先移动到第二个柱子上,我再把最后一个盘子直接移动到第三个柱子,再让那个人把刚才的前63个盘子从第二个柱子上移动到第三个柱子上,我的任务就完成了,简单.所以他找了比他年轻的和尚(后面我们叫他第二个和尚),命令:

【C/C++学院】0817-递归汉诺塔 双层递归 /CPP结构体 /面向过程与面向对象的编程模式/类的常识共用体实现一个类的特征/QT应用于类以及类的常识

递归汉诺塔 双层递归 #include <iostream> void han(int n, char A, char B, char C) { static int num = 1; std::cout << "第" << num << "次"; num++; if (n<1) { return; } else { han(n - 1, A, C, B); std::cout << A <&l

用C语言实现汉诺塔自动递归演示程序

用C语言实现汉诺塔自动递归演示程序 程序实现效果 1.变界面大小依照输入递归数改变. 2.汉诺塔自动移动演示. 3.采用gotoxy实现流畅刷新. 4.保留文字显示递归流程 程序展示及实现 github地址:https://github.com/404name/C-game 0.主体思路 输入要递归的汉诺塔数目,在原来的汉诺塔基础上新增move_play函数展示递归,用next数组存储每种移动状态.对应的从哪到哪可自动对应相应的移动方式自动移动. 1.变界面大小依照输入递归数改变 init函数按

算法——汉诺塔问题(递归典型)

汉诺塔 汉诺塔是一个发源于印度的益智游戏,也叫河内塔.相传它源于印度神话中的大梵天创造的三个金刚柱,一根柱子上叠着上下从小到大64个黄金圆盘.大梵天命令婆罗门将这些圆盘按从小到大的顺序移动到另一根柱子上,其中大圆盘不能放在小圆盘上面.当这64个圆盘移动完的时候,世界就将毁灭. 算法分析: 一阶汉诺塔的移动,显而易见,从 A->C 然后,我们可以探讨二阶与一阶的联系: 不光是对于二阶,其实N阶汉诺塔相当于执行了三大步骤:  1.在ACB的顺序下执行了(N-1)阶汉诺塔的移法 2.从A->C移动了

Hanio汉诺塔代码递归实现

1.背景介绍 Hanio (汉诺塔,又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘. 我们姑且不去追溯传说的缘由,现考虑一下把64片金片,由一根针上移到另一根针上,并且始终保持上小下大的顺序.这需要多少次移动呢?这里需要递归的方法.假设有n片,移动次数是f(n).显然f

HDU 2064 汉诺塔III(递归)

题目链接 Problem Description 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下.由小到大顺序串着由64个圆盘构成的塔.目的是将最左边杆上的盘全部移到右边的杆上,条件是一次只能移动一个盘,且不允许大盘放在小盘的上面.现在我们改变游戏的玩法,不允许直接从最左(右)边移到最右(左)边(每次移动一定是移到中间杆或从中间移出),也不允许大盘放到下盘的上面.Daisy已经做过原来的汉诺塔问题和汉诺塔II,但碰到这个问题时,她想了很久都不能解决,现在

【Python实践-3】汉诺塔问题递归求解

1 # -*- coding: utf-8 -*- 2 #汉诺塔移动问题 3 # 定义move(n,a,b,c)函数,接受参数n,表示3个柱子A.B.C中第1个柱子A的盘子数量 4 # 然后打印出把所有盘子从A借助B移动到C的方法 5 def move(n,a,b,c): 6 if n==1: 7 print('move', a, '-->', c) 8 else: 9 move(n-1,a,c,b) 10 move(1,a,b,c) 11 move(n-1,b,a,c) 12 move(5,'

汉诺塔问题--递归实现

/*汉诺塔问题*/ #include <stdio.h> #include <stdlib.h> //定义n为移动的层数,x,y,z分别代表三根柱子,表示把前n层塔牌从x借助y移动到z void move(int n,char x,char y,char z) { if(n == 1) { printf("从 %c 移动到 %c \n",x,z); } else { move(n-1,x,z,y); printf("从 %c 移动到 %c \n&quo