看完这个你还不理解右值引用和移动构造 你就可以来咬我(上)

共分三篇,这是第一篇。另外两篇,看完这个你还不理解右值引用和移动构造 你就可以来咬我(中)看完这个你还不理解右值引用和移动构造
你就可以来咬我(下)

C++ 右值引用 & 新特性



C++ 11中引入的一个非常重要的概念就是右值引用。理解右值引用是学习“移动语义”(move
semantics)
的基础。而要理解右值引用,就必须先区分左值与右值。

对左值和右值的一个最常见的误解是:等号左边的就是左值,等号右边的就是右值。左值和右值都是针对表达式而言的,左值是指表达式结束后依然存在的持久对象,右值是指表达式结束时就不再存在的临时对象。一个区分左值与右值的便捷方法是:看能不能对表达式取地址,如果能,则为左值,否则为右值。下面给出一些例子来进行说明。

 int a = 10;
 int b = 20;
 int *pFlag = &a;
 vector<int> vctTemp;
 vctTemp.push_back(1);
 string str1 = "hello ";
 string str2 = "world";
 const int &m = 1;

请问,a,b, a+b, a++, ++a, pFlag, *pFlag,
vctTemp[0], 100, string("hello"), str1, str1+str2, m
分别是左值还是右值?

ab都是持久对象(可以对其取地址),是左值;

a+b是临时对象(不可以对其取地址),是右值;

a++是先取出持久对象a的一份拷贝,再使持久对象a的值加1,最后返回那份拷贝,而那份拷贝是临时对象(不可以对其取地址),故其是右值;

++a则是使持久对象a的值加1,并返回那个持久对象a本身(可以对其取地址),故其是左值;

pFlag*pFlag都是持久对象(可以对其取地址),是左值;

vctTemp[0]调用了重载的[]操作符,而[]操作符返回的是一个int
&
,为持久对象(可以对其取地址),是左值;

100string("hello")是临时对象(不可以对其取地址),是右值;

str1是持久对象(可以对其取地址),是左值;

str1+str2是调用了+操作符,而+操作符返回的是一个string(不可以对其取地址),故其为右值;

m是一个常量引用,引用到一个右值,但引用本身是一个持久对象(可以对其取地址),为左值。

区分清楚了左值与右值,我们再来看看左值引用。左值引用根据其修饰符的不同,可以分为非常量左值引用和常量左值引用。

非常量左值引用只能绑定到非常量左值,不能绑定到常量左值、非常量右值和常量右值。如果允许绑定到常量左值和常量右值,则非常量左值引用可以用于修改常量左值和常量右值,这明显违反了其常量的含义。如果允许绑定到非常量右值,则会导致非常危险的情况出现,因为非常量右值是一个临时对象,非常量左值引用可能会使用一个已经被销毁了的临时对象。

常量左值引用可以绑定到所有类型的值,包括非常量左值、常量左值、非常量右值和常量右值。

可以看出,使用左值引用时,我们无法区分出绑定的是否是非常量右值的情况。那么,为什么要对非常量右值进行区分呢,区分出来了又有什么好处呢?这就牵涉到C++中一个著名的性能问题——拷贝临时对象。考虑下面的代码:

vector<int> GetAllScores()
{
 vector<int> vctTemp;
 vctTemp.push_back(90);
 vctTemp.push_back(95);
 return vctTemp;
}

当使用vector<int> vctScore = GetAllScores()进行初始化时,实际上调用了三次构造函数(一次是vecTemp的构造,一次是return
临时对象的构造,一次是vecScore的复制构造)
。尽管有些编译器可以采用RVO(Return Value
Optimization)
来进行优化,但优化工作只在某些特定条件下才能进行。可以看到,上面很普通的一个函数调用,由于存在临时对象的拷贝,导致了额外的两次拷贝构造函数和析构函数的开销。当然,我们也可以修改函数的形式为void
GetAllScores(vector<int> &vctScore)
,但这并不一定就是我们需要的形式。另外,考虑下面字符串的连接操作:

 string s1("hello");
 string s = s1 + "a" + "b" + "c" + "d" + "e";

在对s进行初始化时,会产生大量的临时对象,并涉及到大量字符串的拷贝操作,这显然会影响程序的效率和性能。怎么解决这个问题呢?如果我们能确定某个值是一个非常量右值(或者是一个以后不会再使用的左值),则我们在进行临时对象的拷贝时,可以不用拷贝实际的数据,而只是“窃取”指向实际数据的指针(类似于STL中的auto_ptr,会转移所有权)。C++
11
中引入的右值引用正好可用于标识一个非常量右值。C++ 11中用&表示左值引用,用&&表示右值引用,如:

 int &&a = 10;

右值引用根据其修饰符的不同,也可以分为非常量右值引用和常量右值引用。

非常量右值引用只能绑定到非常量右值,不能绑定到非常量左值、常量左值和常量右值。如果允许绑定到非常量左值,则可能会错误地窃取一个持久对象的数据,而这是非常危险的;如果允许绑定到常量左值和常量右值,则非常量右值引用可以用于修改常量左值和常量右值,这明显违反了其常量的含义。

常量右值引用可以绑定到非常量右值和常量右值,不能绑定到非常量左值和常量左值(理由同上)。

有了右值引用的概念,我们就可以用它来实现下面的CMyString类。

class CMyString
{
public:
    // 构造函数
 CMyString(const char *pszSrc = NULL)
 {
  cout << "CMyString(const char *pszSrc = NULL)" << endl;
  if (pszSrc == NULL)
  {
   m_pData = new char[1];
   *m_pData = ‘\0‘;
  }
  else
  {
   m_pData = new char[strlen(pszSrc)+1];
   strcpy(m_pData, pszSrc);
  }
 }

    // 拷贝构造函数
 CMyString(const CMyString &s)
 {
  cout << "CMyString(const CMyString &s)" << endl;
  m_pData = new char[strlen(s.m_pData)+1];
  strcpy(m_pData, s.m_pData);
 }

    // move构造函数     ----        实质上就是·窃取·临时对象,注意参数的形式
 CMyString(CMyString &&s)
 {
  cout << "CMyString(CMyString &&s)" << endl;
  m_pData = s.m_pData;
  s.m_pData = NULL;
 }

    // 析构函数
 ~CMyString()
 {
  cout << "~CMyString()" << endl;
  delete [] m_pData;
  m_pData = NULL;
 }

    // 拷贝赋值函数
 CMyString &operator =(const CMyString &s)
 {
  cout << "CMyString &operator =(const CMyString &s)" << endl;
  if (this != &s)
  {
   delete [] m_pData;
   m_pData = new char[strlen(s.m_pData)+1];
   strcpy(m_pData, s.m_pData);
  }
  return *this;
 }

    // move赋值函数
 CMyString &operator =(CMyString &&s)
 {
  cout << "CMyString &operator =(CMyString &&s)" << endl;
  if (this != &s)
  {
   delete [] m_pData;
   m_pData = s.m_pData;
   s.m_pData = NULL;
  }
  return *this;
 }

private:
 char *m_pData;
};

可以看到,上面我们添加了move版本的构造函数和赋值函数。那么,添加了move版本后,对类的自动生成规则有什么影响呢?唯一的影响就是,如果提供了move版本的构造函数,则不会生成默认的构造函数。另外,编译器永远不会自动生成move版本的构造函数和赋值函数,它们需要你手动显式地添加。

当添加了move版本的构造函数和赋值函数的重载形式后,某一个函数调用应当使用哪一个重载版本呢?下面是按照判决的优先级列出的3条规则:

1、常量值只能绑定到常量引用上,不能绑定到非常量引用上。

2、左值优先绑定到左值引用上,右值优先绑定到右值引用上。

3、非常量值优先绑定到非常量引用上。

当给构造函数或赋值函数传入一个非常量右值时,依据上面给出的判决规则,可以得出会调用move版本的构造函数或赋值函数。而在move版本的构造函数或赋值函数内部,都是直接“移动”了其内部数据的指针(因为它是非常量右值,是一个临时对象,移动了其内部数据的指针不会导致任何问题,它马上就要被销毁了,我们只是重复利用了其内存),这样就省去了拷贝数据的大量开销。

一个需要注意的地方是,拷贝构造函数可以通过直接调用*this =
s
来实现,但move构造函数却不能。这是因为在move构造函数中,s虽然是一个非常量右值引用,但其本身却是一个左值(是持久对象,可以对其取地址),因此调用*this
= s
时,会使用拷贝赋值函数而不是move赋值函数,而这已与move构造函数的语义不相符。要使语义正确,我们需要将左值绑定到非常量右值引用上,C++
11
提供了move函数来实现这种转换,因此我们可以修改为*this
= move(s)
,这样move构造函数就会调用move赋值函数。

时间: 2024-10-22 13:29:01

看完这个你还不理解右值引用和移动构造 你就可以来咬我(上)的相关文章

从4行代码看右值引用

从4行代码看右值引用 概述 右值引用的概念有些读者可能会感到陌生,其实他和C++98/03中的左值引用有些类似,例如,c++98/03中的左值引用是这样的: int i = 0; int& j = i; 这里的int&是对左值进行绑定(但是int&却不能绑定右值),相应的,对右值进行绑定的引用就是右值引用,他的语法是这样的A&&,通过双引号来表示绑定类型为A的右值.通过&&我们就可以很方便的绑定右值了,比如我们可以这样绑定一个右值: int&

[转][c++11]我理解的右值引用、移动语义和完美转发

c++中引入了右值引用和移动语义,可以避免无谓的复制,提高程序性能.有点难理解,于是花时间整理一下自己的理解. 左值.右值 C++中所有的值都必然属于左值.右值二者之一.左值是指表达式结束后依然存在的持久化对象,右值是指表达式结束时就不再存在的临时对象.所有的具名变量或者对象都是左值,而右值不具名.很难得到左值和右值的真正定义,但是有一个可以区分左值和右值的便捷方法:看能不能对表达式取地址,如果能,则为左值,否则为右值. 看见书上又将右值分为将亡值和纯右值.纯右值就是c++98标准中右值的概念,

【转】C++ 11 右值引用的理解

右值引用的目的之一,是为了C++中一个比较影响性能的问题:拷贝临时对象,例如,在 1 int foo(){ ... } 2 int x; 3 x = foo(); 中,在第三句中,发生了以下的事情: 1.销毁 x 所持有的资源: 2.拷贝函数 foo 返回的临时对象所持有的资源: 3.销毁 foo 返回的临时对象: 经历了三次的操作,然而实际上,如果直接将 x 指向 foo 所返回的临时对象,调用临时对象的析构函数去销毁 x 之前拥有的资源的话,省略了很多麻烦的步骤,但是由于之前的 C++ 中对

[c++11]右值引用、移动语义和完美转发

c++中引入了右值引用和移动语义,可以避免无谓的复制,提高程序性能.有点难理解,于是花时间整理一下自己的理解. 左值.右值 C++中所有的值都必然属于左值.右值二者之一.左值是指表达式结束后依然存在的持久化对象,右值是指表达式结束时就不再存在的临时对象.所有的具名变量或者对象都是左值,而右值不具名.很难得到左值和右值的真正定义,但是有一个可以区分左值和右值的便捷方法:看能不能对表达式取地址,如果能,则为左值,否则为右值. 看见书上又将右值分为:将亡值和纯右值. 纯右值就是c++98标准中右值的概

第二十四章 C++11特性之右值引用

右值引用,是 C++11 语言核心中最为重要的改进之一.右值引用给 C++ 带来了“Move语义”(“转移语义”),同时解决了模板编程中完美转发的问题(Perfect forwarding).右值引用使 C++ 对象有能力甄别什么是(可以看作)临时对象,对于临时对象的拷贝可以做某种特别的处理,一般来说主要是直接传递资源的所有权而不是像一般地进行拷贝,这就是所谓的 move 语义了.完美转发则是指在模板编程的时候,各层级函数参数传递时不会丢失参数的“属性”(lvalue/rvalue, const

C++11标准之右值引用(rvalue reference)

1.右值引用引入的背景 临时对象的产生和拷贝所带来的效率折损,一直是C++所为人诟病的问题.但是C++标准允许编译器对于临时对象的产生具有完全的自由度,从而发展出了Copy Elision.RVO(包括NRVO)等编译器优化技术,它们可以防止某些情况下临时对象产生和拷贝.下面简单地介绍一下Copy Elision.RVO,对此不感兴趣的可以直接跳过: (1) Copy Elision Copy Elision技术是为了防止某些不必要的临时对象产生和拷贝,例如: struct A { A(int)

C++新特性 右值引用 移动构造函数

1.右值引用引入的背景 临时对象的产生和拷贝所带来的效率折损,一直是C++所为人诟病的问题.但是C++标准允许编译器对于临时对象的产生具有完全的自由度,从而发展出了Copy Elision.RVO(包括NRVO)等编译器优化技术,它们可以防止某些情况下临时对象产生和拷贝.下面简单地介绍一下Copy Elision.RVO,对此不感兴趣的可以直接跳过: (1) Copy Elision Copy Elision技术是为了防止某些不必要的临时对象产生和拷贝,例如: struct A { A(int)

移动语义、移动构造函数和右值引用

C++引用现在分为左值引用(能取得其地址)和 右值引用(不能取得其地址).其实很好理解,左值引用中的左值一般指的是出现在等号左边的值(带名称的变量,带*号的指针等一类的数据),程序能对这样的左值进行引用获得其地址:右值引用中的右值一般指的就是出现在等号右边的值(右值引用:常量.表达式.函数非左值引用的返回值),程序不能对这样的右值进行引用获得其地址. 引入右值引用的目的之一是实现移动语义. (1)移动语义的引入是为了解决在进行大数据复制的时候,将动态申请的内存空间的所有权直接转让出去,不用进行大

C++11中的右值引用及move语义编程

C++0x中加入了右值引用,和move函数.右值引用出现之前我们只能用const引用来关联临时对象(右值)(造孽的VS可以用非const引用关联临时对象,请忽略VS),所以我们不能修临时对象的内容,右值引用的出现就让我们可以取得临时对象的控制权,终于可以修改临时对象了!而且书上说配合move函数,可以大大提高现有C++的效率.那么是怎样提高它的效率的呢?看段代码先! #include <iostream> #include <utility> #include <vector