ZOJ 3609 Modular Inverse (水题)

Modular Inverse


Time Limit: 2 Seconds      Memory Limit: 65536 KB



The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1x (mod m). This is equivalent to ax≡1 (mod m).

Input

There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.

Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.

Output

For each test case, output the smallest positive x. If such x doesn‘t exist, output "Not Exist".

Sample Input

3
3 11
4 12
5 13

Sample Output

4
Not Exist
8

References



Author: WU, Zejun
Contest: The 9th Zhejiang Provincial Collegiate Programming Contest

简单来说就是要求给定n,m 求一个x使得 (n*x)%m=1, 如果x存在输出最小正整数x,否则输出Not Exist

注意m=1的情况,因为任何数对1取模会等于0,但是这里要求输出最小正整数,所以输出1

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<stdlib.h>
 4 #include<algorithm>
 5 using namespace std;
 6 int gcd(int a,int b)
 7 {
 8     return b?gcd(b,a%b):a;
 9 }
10 int main()
11 {
12     //freopen("in.txt","r",stdin);
13     int kase;
14     scanf("%d",&kase);
15     while(kase--)
16     {
17         int n,m;
18         scanf("%d %d",&n,&m);
19
20         if(m==1)//当m=1时,数字对1取模等于0,存在这个数字,但是这里要输出最小的正整数,所以输出1
21         {printf("1\n");continue;}
22
23         int Gcd=gcd(n,m);
24
25         if(Gcd>1)
26         {printf("Not Exist\n");continue;}
27
28         else
29             for(int i=1;i<=1000;i++)
30                 if((n*i)%m==1)
31                 {printf("%d\n",i);break;}
32     }
33     return 0;
34 }

ZOJ 3609 Modular Inverse (水题)

时间: 2024-10-27 08:16:10

ZOJ 3609 Modular Inverse (水题)的相关文章

ZOJ 3609 Modular Inverse 解线性模方程

点击打开链接 Modular Inverse Time Limit: 2 Seconds      Memory Limit: 65536 KB The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m). This is equivalent to ax≡1 (mod m). Input There are multiple test ca

ZOJ 3609 Modular Inverse

题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3609 题面: Modular Inverse Time Limit: 2 Seconds      Memory Limit: 65536 KB The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m).

ZOJ 3609 Modular Inverse(扩展欧几里德)

题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4712 The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m). This is equivalent to ax≡1 (mod m). Input There are multiple test cases.

ZOJ - 3609 —— Modular Inverse 【乘法逆,扩展欧几里得】

题目:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4712 1. 这题数据范围太小,直接暴力即可 2. 不过其实这题也是很“直白的”求乘法逆的题目,即当b=1的特殊的模线性方程问题ax≡b mod(n),可以通过扩展欧几里得算法求解:   ax≡b mod(n) => (ax) mod n = b mod n => ax=k1*n+r ... (1) b=k2n+r    ... (2)  (1)-(2)=>ax-

ZOJ 4712: Modular Inverse

Modular Inverse ///@author Sycamore, ZJNU; ///@date 8/6/2017 ///@ref stanford-acm-master #include<bits/stdc++.h> using namespace std; typedef long long ll; int mod(int a, int b) { return ((a%b) + b) % b; } int extended_euclid(int a, int b, int &

【ZOJ】3609 Modular Inverse

1. 题目描述求乘法逆元. 2. 基本思路利用扩展gcd求逆元,模板题目. 3. 代码 1 /* 3609 */ 2 #include <iostream> 3 #include <sstream> 4 #include <string> 5 #include <map> 6 #include <queue> 7 #include <set> 8 #include <stack> 9 #include <vector

[ACM] ZOJ 3819 Average Score (水题)

Average Score Time Limit: 2 Seconds      Memory Limit: 65536 KB Bob is a freshman in Marjar University. He is clever and diligent. However, he is not good at math, especially in Mathematical Analysis. After a mid-term exam, Bob was anxious about his

ZOJ 3708 Density of Power Network (水题)

Density of Power Network Time Limit: 2 Seconds      Memory Limit: 65536 KB The vast power system is the most complicated man-made system and the greatest engineering innovation in the 20th century. The following diagram shows a typical 14 bus power s

浙江2012年省赛J题 Modular Inverse

Modular Inverse Time Limit: 2000MS   Memory Limit: 65535KB   64bit IO Format: Submit Status Description The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m). This is equivalent to ax≡1 (mod m). I