python性能还是不错的

一个未优化的程序,跑了四天,字典长度有15万条,每条40个字段,跑得还算不错。

刚刚优化后的:

等运行两天后再看看效果。。。

时间: 2024-10-26 14:34:37

python性能还是不错的的相关文章

提高Python性能的一些建议(一)

最近换住的地方,网费到期,有两个星期没更新博客了,博客还是要坚持写的,有时候工作时遇到了相关问题,查看相关博客,还是能够得到一些思路或者灵感.虽然写篇博客要话费不少时间(我一般要花一个半小时到两个小时之间),但是这中间码字呀.归纳总结的过程还是让我受益匪浅的,温故而知新!当然分享自己的学习心得,也会让自己认识一些志同道合的朋友,也挺好.不说许多,今天讲讲如何提高Python性能的问题. python的性能相对c语言等还是有一定的劣势,但是如果能掌握一些优化性能的技巧,不仅能够提高代码的运行效率,

Python性能鸡汤(转)

英文原文:http://blog.monitis.com/index.php/2012/02/13/python-performance-tips-part-1/ 英文原文:http://blog.monitis.com/index.php/2012/03/21/python-performance-tips-part-2/ 译文:http://www.oschina.net/question/1579_45822 Python是解释型语言,因此它的执行效率不高 [1] ,但这并不影响它的流行.

Python性能(转)

第一部分 阅读 Zen of Python,在Python解析器中输入 import this. 一个犀利的Python新手可能会注意到"解析"一词, 认为Python不过是另一门脚本语言. "它肯定很慢!" 毫无疑问:Python程序没有编译型语言高效快速. 甚至Python拥护者们会告诉你Python不适合这些领域. 然而,YouTube已用Python服务于每小时4千万视频的请求. 你所要做的就是编写高效的代码和需要时使用外部实现(C/C++)代码. 这里有一

Python性能鸡汤

第一部分 阅读 Zen of Python,在Python解析器中输入 import this. 一个犀利的Python新手可能会注意到"解析"一词, 认为Python不过是另一门脚本语言. "它肯定很慢!" 毫无疑问:Python程序没有编译型语言高效快速. 甚至Python拥护者们会告诉你Python不适合这些领域. 然而,YouTube已用Python服务于每小时4千万视频的请求. 你所要做的就是编写高效的代码和需要时使用外部实现(C/C++)代码. 这里有一

分析python性能

python性能分析 阅读目录 调优简介 Python基于事件的性能分析器的简单示例代码 Linux统计式性能分析器OProfile(http://oprofile.sourceforge.net/news/)的分析结果: 性能分析的重要性 性能分析的内容 内存消耗和内存泄漏 过早优化的风险 运行时间复杂度 性能分析最佳实践 回到顶部 调优简介 什么是性能分析 没有优化过的程序通常会在某些子程序(subroutine)上消耗大部分的CPU指令周期(CPU cycle).性能分析就是分析代码和它正

Python性能优化(转)

分成两部分:代码优化和工具优化 原文:http://my.oschina.net/xianggao/blog/102600 阅读 Zen of Python,在Python解析器中输入 import this. 一个犀利的Python新手可能会注意到"解析"一词, 认为Python不过是另一门脚本语言. "它肯定很慢!" 毫无疑问:Python程序没有编译型语言高效快速. 甚至Python拥护者们会告诉你Python不适合这些领域. 然而,YouTube已用Pyth

6个Python性能优化技巧

ython是一门非常酷的语言,因为很少的Python代码可以在短时间内做很多事情,并且,Python很容易就能支持多任务和多重处理. Python的批评者声称Python性能低效.执行缓慢,但实际上并非如此:尝试以下6个小技巧,可以加快Python应用程序. 1.关键代码可以依赖于扩展包 Python使许多编程任务变得简单,但是对于很关键的任务并不总是提供最好的性能.使用C.C++或者机器语言扩展包来执行关键任务能极大改善性能.这些包是依赖于平台的,也就是说,你必须使用特定的.与你使用的平台相关

Python性能分析指南(未完成)

英文原文:http://www.huyng.com/posts/python-performance-analysis/ 译文:http://www.oschina.net/translate/python-performance-analysis 虽然你所写的每个Python程序并不总是需要严密的性能分析,但是当这样的问题出现时,如果能知道Python生态系统中的许多种工具,这样总是可以让人安心的. 分析一个程序的性能可以归结为回答4个基本的问题: 1.它运行的有多块? 2.那里是速度的瓶颈?

如何提高python性能

在Python解析器中输入 import this. 一个犀利的Python新手可能会注意到"解析"一词, 认为Python不过是另一门脚本语言. "它肯定很慢!" 毫无疑问:Python程序没有编译型语言高效快速. 甚至Python拥护者们会告诉你Python不适合这些领域. 然而,YouTube已用Python服务于每小时4千万视频的请求. 你所要做的就是编写高效的代码和需要时使用外部实现(C/C++)代码. 这里有一些建议,可以帮助你成为一个更好的Python