二维几何基础

1. 点、线、凸边形

  1 /*******************************************************
  2                     二维几何基础
  3 【注意】数组下标从1开始。
  4 *******************************************************/
  5
  6 #include <iostream>
  7 #include <cstdio>
  8 #include <cstdlib>
  9 #include <cmath>
 10 #include <iomanip>
 11 #include <algorithm>
 12 #include <string>
 13 #define re register
 14 #define il inline
 15 #define ll long long
 16 #define ld long double
 17 using namespace std;
 18 const ll MAXN = 1e5+5;
 19 const ll INF = 1e9;
 20 const ld EPS = 1e-9;
 21
 22 //点坐标
 23 struct POINT
 24 {
 25     ld x, y;
 26     POINT() : x(0), y(0) {}
 27     POINT(ld _x, ld _y) : x(_x), y(_y) {}
 28 };
 29 //向量
 30 typedef POINT VECTOR;
 31
 32 POINT xy[MAXN];     //顺时针多边形顶点存储
 33 POINT xyB[MAXN];    //判断点存储
 34
 35
 36 //符号函数
 37 ll sgn(ld x)    {return x < -EPS ? -1 : x > EPS;}
 38 //向量+向量=向量,点+向量=点
 39 VECTOR operator + (VECTOR a, VECTOR b)  {return {a.x+b.x,a.y+b.y};}
 40 //向量-向量=向量,点-点=向量
 41 VECTOR operator - (VECTOR a, VECTOR b)  {return {a.x-b.x,a.y-b.y};}
 42 //向量*数=向量
 43 VECTOR operator * (VECTOR a, ld k)  {return {a.x*k,a.y*k};}
 44 VECTOR operator * (ld k, VECTOR a)  {return {a.x*k,a.y*k};}
 45 //向量/数=向量
 46 VECTOR operator / (VECTOR a, ld k)  {return {a.x/k,a.y/k};}
 47 //向量==向量,点==点
 48 bool operator == (const VECTOR a, const VECTOR b)   {return !sgn(a.x-b.x) && !sgn(a.y-b.y);}
 49 //向量偏序关系(先x轴再y轴)
 50 bool operator < (const VECTOR a, const VECTOR b)    {return !sgn(a.x-b.x) ? a.y < b.y : a.x < b.x;}
 51 //向量旋转(逆时针)
 52 VECTOR rot(VECTOR a, ld sita)   {return {a.x*cos(sita)-a.y*sin(sita),a.x*sin(sita)+a.y*cos(sita)};}
 53 //取下端点
 54 POINT min(POINT p1, POINT p2)   {return p1.y<p2.y ? p1:p2;}
 55 //取上端点
 56 POINT max(POINT p1, POINT p2)   {return p1.y<p2.y ? p2:p1;}
 57 //点积
 58 ld dot(POINT p1, POINT p2, POINT p) {return (p.x-p1.x)*(p2.x-p1.x)+(p.y-p1.y)*(p2.y-p1.y);} //(三点式:共p1端点)
 59 ld dot(VECTOR a, VECTOR b)      {return a.x*b.x+a.y*b.y;}   //向量式
 60 //叉积
 61 ld cross(POINT p1, POINT p2, POINT p)   {return (p.x-p1.x)*(p2.y-p1.y)-(p.y-p1.y)*(p2.x-p1.x);} //(三点式:共p1端点)
 62 ld cross(VECTOR a, VECTOR b)    {return a.x*b.y-a.y*b.x;}   //向量式(aXb)
 63 //向量长度
 64 ld vlen(VECTOR a) {return sqrt(dot(a,a));}
 65 //向量夹角余弦值
 66 ld vcos(VECTOR a, VECTOR b) {return dot(a,b)/(vlen(a)*vlen(b));}
 67 //向量夹角正弦值
 68 ld vsin(VECTOR a, VECTOR b) {return fabs(cross(a,b))/(vlen(a)*vlen(b));}
 69 //向量极角
 70 ld vagl(VECTOR a, VECTOR b) {return acos(dot(a,b)/(vlen(a)*vlen(b)));}  //向量间
 71 ld vagl(VECTOR a) {return acos(a.x/vlen(a));}
 72 //求直线斜率【注意】确保斜率存在
 73 ld slope(VECTOR a)  {return a.y/a.x;}   //向量式
 74 ld slope(POINT p, POINT q)  {return (p.y-q.y)/(p.x-q.x);}   //两点式
 75 //单位向量【注意】确保非零向量
 76 VECTOR unit(VECTOR a)   {return a/vlen(a);}
 77 //两直线交点
 78 POINT intersectline(POINT p, VECTOR v, POINT q, VECTOR w)   {return p+v*cross(w,p-q)/cross(v,w);}   //(参数式:P=P0+t*v,P0为直线上某一点,v为直线的方向向量)
 79 //点在直线上的投影
 80 POINT proline(POINT a, POINT b, POINT p)    {return a+(b-a)*(dot(b-a,p-a)/dot(b-a,b-a));}
 81 //点关于直线的对称点
 82 POINT refline(POINT a, POINT b, POINT p)    {return proline(a,b,p)*2-p;}
 83 //判断两直线是否平行
 84 bool parallel(POINT p1, POINT p2, POINT q1, POINT q2)   {return !sgn(cross(p2-p1,q2-q1)) && sgn(cross(p1-q1,p2-q1));}
 85 //判断两直线重合
 86 bool superposition(POINT p1, POINT p2, POINT q1, POINT q2)  {return !sgn(cross(p2-p1,q2-q1)) && !sgn(cross(p1-q1,p2-q1));}
 87 //点到直线距离
 88 ld disline(POINT a, POINT b, POINT p)   {return fabs(cross(b-a,p-a))/vlen(b-a);}    //不取绝对值得到的是有向距离
 89 //点到线段距离(两种情况:点的投影在线段上,则为垂直距离;点的投影不在线段上,则为到两端距离的最小值)
 90 ld disseg(POINT a, POINT b, POINT p)    {return a==b ? vlen(p-a):dot(b-a,p-a)<0 ? vlen(p-a):dot(b-a,p-b)>0 ? vlen(p-b):fabs(cross(b-a,p-a))/vlen(b-a);}
 91 //线段相交判断(严格)
 92 bool intersectseg(POINT p1, POINT p2, POINT q1, POINT q2)   {return cross(p1-q1,q2-q1)*cross(p2-q1,q2-q1)<0 && cross(q1-p1,p2-p1)*cross(q2-p1,p2-p1)<0;}
 93 //判断点p(x,y)是否在线段p1p2上(两种情况:1.包括端点;2.不包含端点)
 94 bool onseg(POINT p1, POINT p2, POINT p) {return !sgn(cross(p1,p2,p)) && sgn(dot(p,p1,p2))<=0;}  //包含端点
 95 bool onseg_strict(POINT p1, POINT p2, POINT p)  {return !sgn(cross(p1,p2,p)) && sgn(dot(p,p1,p2))<0;}   //不包含端点
 96
 97 //点射法判断点是否在多边形内部(边界也算在内部)
 98 //复杂度O(n)(不论凹凸)
 99 bool inpolygon_dot(ld x, ld y, ll n)
100 {
101     ll cnt = 0;
102     for(re ll i = 0; i < n; ++i)
103     {
104         POINT p1 = min(xy[i+1], xy[(i+1)%n+1]);    //取下端点
105         POINT p2 = max(xy[i+1], xy[(i+1)%n+1]);    //取上端点
106         //特判点在线段上
107         if(onseg(p1,p2,{x,y}))    return true;
108         //从点(x,y)向x反方向引出射线
109         //计算点射到的多边形的边数边数
110         if(sgn(p1.y-y)<0 && sgn(y-p2.y) <=0 && sgn(cross(p1,p2,{x,y}))>0)   ++cnt;
111     }
112     if(cnt%2)   return true;
113     else    return false;
114 }
115
116 //二分法判断点是否在多边形内部(不包括边界)
117 //复杂度O(logn)(要求凸多边形)
118 bool inpolygon_bis(ld x, ld y, ll n)
119 {
120     POINT p = {x,y};
121     ll l = 2, r = n;
122     //判断是否在幅角最小和最大的两条边上
123     if(onseg(xy[1],xy[l],p) || onseg(xy[1],xy[n],p))    return false;
124     //二分法判断是否在多边形内部
125     while(l < r)
126     {
127         ll mid = (l+r)>>1;  //【注意】如此取中点最终:r==l或r==l-1(只有此两种情况)
128         ll d = sgn(cross(xy[mid]-xy[1],p-xy[1]));
129         if(d < 0)   l = mid+1;
130         else if(d > 0)  r = mid-1;
131         else
132         {
133             if(onseg_strict(xy[1],xy[mid],p))
134             {
135                 return true;
136             }
137             else
138             {
139                 return false;
140             }
141         }
142     }
143     //判断在最终二分得到的对角线两端的边是否都满足严格在内的条件
144     if(l >= r && (sgn(cross(xy[l]-xy[l-1],p-xy[l-1]))>=0 || sgn(cross(xy[l%n+1]-xy[l],p-xy[l]))>=0))
145     {
146         return false;
147     }
148     return true;
149 }
150
151 //计算多边形面积(凹凸均可)
152 ld polygonarea(ll n)
153 {
154     ld aera = 0;
155     for(re ll i = 0; i < n; ++i)
156     {
157         aera += cross(xy[i+1], xy[(i+1)%n+1]);
158     }
159     //计算出来的aera为有向面积
160     return fabs(aera)/2;
161 }
162
163 int main()
164 {
165     std::ios::sync_with_stdio(false);
166     //判断直线平行/重合/相交
167     ll n;
168     cin >> n;
169     cout << "INTERSECTING LINES OUTPUT" << endl;
170     for(re ll i = 1; i <= n; ++i)
171     {
172         POINT p1, p2, p3, p4;
173         cin >> p1.x >> p1.y >> p2.x >> p2.y;
174         cin >> p3.x >> p3.y >> p4.x >> p4.y;
175         if(parallel(p1,p2,p3,p4))   cout << "NONE" << endl;
176         else if(superposition(p1,p2,p3,p4)) cout << "LINE" << endl;
177         else
178         {
179             POINT q = intersectline(p1,p2-p1,p3,p4-p3);
180             cout << "POINT " << fixed << setprecision(2) << q.x << " " << q.y << endl;
181         }
182     }
183     cout << "END OF OUTPUT" << endl;
184     return 0;
185     /*
186     //计算多边形的面积
187     ll n;
188     while(true)
189     {
190         std::cin >> n;
191         if(!n)  break;
192         for(re ll i = 1; i <= n; ++i)
193         {
194             std::cin >> xy[i].x;
195             std::cin >> xy[i].y;
196         }
197         std::cout << std::fixed << std::setprecision(1) << polygonarea(n) << std::endl;
198     }
199     return 0;
200     */
201     /*
202     //判断点是否在多边形内(不包括边界)
203     ll n;
204     std::cin >> n;
205     for(re ll i = 1; i <= n; ++i)
206     {
207         std::cin >> xy[i].x;
208         std::cin >> xy[i].y;
209     }
210     ll m;
211     cin >> m;
212     for(re ll i = 1; i <= m; ++i)
213     {
214         cin >> xyB[i].x;
215         cin >> xyB[i].y;
216     }
217     for(re ll i = 1; i <= m; ++i)
218     {
219         if(!inpolygon_bis(xyB[i].x, xyB[i].y, n))
220         {
221             printf("NO\n");
222             return 0;
223         }
224     }
225     printf("YES\n");
226     return 0;
227     */
228     /*
229     //判断点是否在多边形内(包括边界)
230     ll N, M, k = 0;
231     while(!(std::cin >> N).eof())
232     {
233         if(!N)  break;
234         std::cin >> M;
235         if(k)   printf("\n");
236         ++k;
237         for(re ll i = 1; i <= N; ++i)
238         {
239             std::cin >> xy[i].x;
240             std::cin >> xy[i].y;
241             //printf("(%f,%f)\n", xy[i].x, xy[i].y);
242         }
243         printf("Problem %lld:\n", k);
244         for(re ll i = 1; i <= M; ++i)
245         {
246             ld x, y;
247             std::cin >> x;
248             std::cin >> y;
249             //printf("(%f,%f)\n", x, y);
250             if(inpolygon(x, y, N))
251             {
252                 printf("Within\n");
253             }
254             else
255             {
256                 printf("Outside\n");
257             }
258         }
259     }
260     return 0;
261     */
262 }

2. 圆

  1 /*****************************************************************
  2                             圆
  3 【注意】三角与反三角最多用一次(损失精度大)。
  4 *****************************************************************/
  5
  6 #include <bits/stdc++.h>
  7 #include <iomanip>
  8 #include <stack>
  9 #include <cstdio>
 10 #include <cmath>
 11 #include <algorithm>
 12 #define re register
 13 #define il inline
 14 #define ll long long
 15 #define ld long double
 16 using namespace std;
 17 const ld PI = 3.14159265358979323846;
 18 const ll MAXN = 5e5+5;
 19 const ld INF = 1e9;
 20 const ld EPS = 1e-10;
 21
 22 //点坐标
 23 struct POINT
 24 {
 25     ld x, y;
 26     POINT() : x(0), y(0) {}
 27     POINT(ld _x, ld _y) : x(_x), y(_y) {}
 28 };
 29 //向量
 30 typedef POINT VECTOR;
 31
 32 //符号函数
 33 ll sgn(ld x)    {return x < -EPS ? -1 : x > EPS;}
 34 //向量+向量=向量,点+向量=点
 35 VECTOR operator + (VECTOR a, VECTOR b)  {return {a.x+b.x,a.y+b.y};}
 36 //向量-向量=向量,点-点=向量
 37 VECTOR operator - (VECTOR a, VECTOR b)  {return {a.x-b.x,a.y-b.y};}
 38 //向量*数=向量
 39 VECTOR operator * (VECTOR a, ld k)  {return {a.x*k,a.y*k};}
 40 VECTOR operator * (ld k, VECTOR a)  {return {a.x*k,a.y*k};}
 41 //向量/数=向量
 42 VECTOR operator / (VECTOR a, ld k)  {return {a.x/k,a.y/k};}
 43 //向量==向量,点==点
 44 bool operator == (const VECTOR a, const VECTOR b)   {return !sgn(a.x-b.x) && !sgn(a.y-b.y);}
 45 //向量偏序关系(先x轴再y轴)
 46 bool operator < (const VECTOR a, const VECTOR b)    {return !sgn(a.x-b.x) ? a.y < b.y : a.x < b.x;}
 47 //取下端点
 48 POINT min(POINT p1, POINT p2)   {return p1.y<p2.y ? p1:p2;}
 49 //取上端点
 50 POINT max(POINT p1, POINT p2)   {return p1.y<p2.y ? p2:p1;}
 51 //点积
 52 ld dot(POINT p1, POINT p2, POINT p) {return (p.x-p1.x)*(p2.x-p1.x)+(p.y-p1.y)*(p2.y-p1.y);} //(三点式:共p1端点)
 53 ld dot(VECTOR a, VECTOR b)      {return a.x*b.x+a.y*b.y;}   //向量式
 54 //叉积
 55 ld cross(POINT p1, POINT p2, POINT p)   {return (p.x-p1.x)*(p2.y-p1.y)-(p.y-p1.y)*(p2.x-p1.x);} //(三点式:共p1端点)
 56 ld cross(VECTOR a, VECTOR b)    {return a.x*b.y-a.y*b.x;}   //向量式(aXb)
 57 //向量长度
 58 ld vlen(VECTOR a) {return sqrt(dot(a,a));}
 59 //向量旋转(逆时针)
 60 VECTOR rot(VECTOR a, ld sita)   {return {a.x*cos(sita)-a.y*sin(sita),a.x*sin(sita)+a.y*cos(sita)};}
 61 //取单位向量
 62 VECTOR unit(VECTOR a)   {return a/vlen(a);}
 63 //取正交单位向量
 64 VECTOR norm(VECTOR a)   {return VECTOR(-a.y,a.x)/vlen(a);}
 65 //向量夹角余弦值
 66 ld vcos(VECTOR a, VECTOR b) {return dot(a,b)/(vlen(a)*vlen(b));}
 67 //向量夹角正弦值
 68 ld vsin(VECTOR a, VECTOR b) {return fabs(cross(a,b))/(vlen(a)*vlen(b));}
 69 //向量极角
 70 //【注意】使用系统反三角函数返回nan是因为超出了定义域(大多数由于精度造成)
 71 //【注意】故使用系统反三角函数需处理边界
 72 ld vagl(VECTOR a, VECTOR b)
 73 {
 74     ld d = dot(a,b)/(vlen(a)*vlen(b));
 75     if(sgn(d-1) == 0)   return 0;
 76     else if(sgn(d+1) == 0)  return PI;
 77     else    return acos(d);
 78 }  //向量间[0,PI]
 79 ld vagl(VECTOR a) {return atan2(a.y, a.x);}                 //单向量[-PI,PI]
 80
 81 //直线
 82 struct LINE
 83 {
 84     POINT p;   //直线上定点
 85     VECTOR v;   //直线方向向量
 86     LINE() {}
 87     //点向式
 88     LINE(POINT _p, VECTOR _v):p(_p), v(_v) {}
 89     //点角式
 90     LINE(POINT _p, ld a):p(_p), v(VECTOR(cos(a), sin(a))) {}
 91     //通过参数t唯一确定直线上点坐标(点向式:P = p + t*v)
 92     POINT point(ld t)   {return p + t*v;}
 93     //平移向量r
 94     LINE trans(VECTOR r)    {return LINE(p+r,v);}
 95 };
 96
 97 //点到直线距离
 98 ld PLdist(POINT p, LINE L) {return fabs(sin(vagl(p-L.p,L.v))*vlen(p-L.p));}
 99
100 //圆
101 struct CIRCLE
102 {
103     POINT c;        //圆心坐标
104     ld r;           //半径
105     CIRCLE() {}
106     CIRCLE(POINT _c, ld _r):c(_c),r(_r) {}
107     //通过圆心角唯一确定圆上点坐标
108     POINT point(ld a)   //a为圆心角
109     {
110         return POINT(c.x+cos(a)*r, c.y+sin(a)*r);
111     }
112 };
113
114 //两点中垂线
115 //返回中垂线的个数
116 ll PerpendicularBisector(POINT p1, POINT p2, LINE &L)
117 {
118     if(p1 == p2)    return 0;
119     L.p = (p1+p2)/2;
120     L.v = rot(p2-p1, PI/2);
121     return 1;
122 }
123
124 //两直线交点
125 POINT LLitesct;
126
127 //直线与直线的交点
128 //返回交点个数
129 ll LineLineIntersection(LINE L1, LINE L2, POINT &p)
130 {
131     if(sgn(cross(L1.v, L2.v)) == 0)
132     {
133         if(sgn(cross(L2.p-L1.p,L2.v) == 0))    return -1;          //两直线重合
134         else    return 0;                       //两直线平行
135     }
136     //以L1为准
137     ld t1 = -cross(L2.p-L1.p, L2.v)/cross(L2.v, L1.v);
138     p = L1.p + t1*L1.v;
139     //以L2为准
140     //ld t2 = -cross(L1.p-L2.p, L1.v)/cross(L1.v, L2.v);
141     //p = L2.p + t2*L2.v;
142     return 1;
143 }
144
145 //直线与圆交点数组
146 vector <POINT> LCitesct;
147
148 //直线与圆的交点
149 //解方程:(at+b)^2+(ct+d)^2 = r^2;
150 //化简得:et^2+ft+g = 0
151 //返回交点个数
152 ll LineCircleIntersection(LINE L, CIRCLE C, ld &t1, ld &t2, vector <POINT>& sol)
153 {
154     ld a = L.v.x, b = L.p.x-C.c.x, c = L.v.y, d = L.p.y-C.c.y;
155     ld e = a*a + c*c, f = 2*(a*b + c*d), g = b*b + d*d - C.r*C.r;
156     ld delta = f*f - 4*e*g;
157     if(sgn(delta) < 0)          //相离
158         return 0;
159     else if(sgn(delta) == 0)    //相切
160     {
161         t1 = t2 = -f/(2*e);
162         sol.push_back(L.point(t1));
163         return 1;
164     }
165     else
166     {
167         t1 = (-f - sqrt(delta))/(2*e);
168         t2 = (-f + sqrt(delta))/(2*e);
169         sol.push_back(L.point(t1));
170         sol.push_back(L.point(t2));
171         return 2;
172     }
173 }
174 ll LineCircleIntersection(LINE L, CIRCLE C, POINT *p)
175 {
176     ld t1, t2;
177     ld a = L.v.x, b = L.p.x-C.c.x, c = L.v.y, d = L.p.y-C.c.y;
178     ld e = a*a + c*c, f = 2*(a*b + c*d), g = b*b + d*d - C.r*C.r;
179     ld delta = f*f - 4*e*g;
180     if(sgn(delta) < 0)          //相离
181         return 0;
182     else if(sgn(delta) == 0)    //相切
183     {
184         t1 = t2 = -f/(2*e);
185         p[0] = L.point(t1);
186         return 1;
187     }
188     else
189     {
190         t1 = (-f - sqrt(delta))/(2*e);
191         t2 = (-f + sqrt(delta))/(2*e);
192         p[0] = L.point(t1);
193         p[1] = L.point(t2);
194         return 2;
195     }
196 }
197
198 //圆与圆的交点数组
199 vector <POINT> CCitesct;
200
201 //两圆交点
202 ll CircleCircleIntersection(CIRCLE C1, CIRCLE C2, vector <POINT>& sol)
203 {
204     ld d = vlen(C1.c-C2.c);
205     if(sgn(d) == 0)
206     {
207         if(sgn(C1.r-C2.r) == 0) return -1;          //两圆重合
208         else    return 0;                           //同心相含
209     }
210     if(sgn(C1.r+C2.r-d) < 0)    return 0;           //相离
211     if(sgn(fabs(C1.r-C2.r)-d) > 0)  return 0;       //异心相含
212
213     //设两圆交点为p1,p2
214     ld a = vagl(C2.c - C1.c);                       //向量C1C2的极角
215     ld b = acos((C1.r*C1.r + d*d - C2.r*C2.r)/(2*C1.r*d));  //向量C1C2到C1P1(或C1P2)的夹角
216     POINT p1 = C1.point(a-b);
217     POINT p2 = C1.point(a+b);
218     sol.push_back(p1);
219     if(p1 == p2)    return 1;                       //相切
220     sol.push_back(p2);                              //相交
221     return 2;
222 }
223
224 //圆切线方向向量
225 VECTOR LCtgt[2];
226
227 //过定点作圆的切线
228 ll Tangents(POINT p, CIRCLE C, VECTOR *v)
229 {
230     VECTOR u = C.c - p;
231     ld dist = vlen(u);
232     if(dist < C.r)  return 0;       //点在圆内,没有切线
233     else if(sgn(dist-C.r) == 0)     //点在圆上,一条切线
234     {
235         v[0] = rot(u, PI/2);
236         return 1;
237     }
238     else                            //点在圆外,两条切线
239     {
240         ld a = asin(C.r/dist);
241         v[0] = rot(u, -a);
242         v[1] = rot(u, +a);
243         return 2;
244     }
245 }
246
247 //两圆公切点(分别在两圆上)
248 POINT CCtgt1[4], CCtgt2[4];
249
250 //两圆公切线
251 ll Tangents(CIRCLE C1, CIRCLE C2, POINT *a, POINT *b)
252 {
253     ll cnt = 0;
254     if(C1.r < C2.r) {swap(C1, C2); swap(a, b);}
255     ld d = dot(C1.c-C2.c, C1.c-C2.c);
256     ld rdiff = C1.r - C2.r;
257     ld rsum = C1.r + C2.r;
258     if(d < rdiff*rsum)  return 0;                       //相含
259     ld base = atan2(C2.c.y-C1.c.y, C2.c.x-C1.c.x);      //向量C1C2极角[-PI,PI]
260     if(sgn(d) == 0 && sgn(C1.r-C2.r) == 0)  return -1;  //重合
261     if(sgn(d-rdiff*rdiff) == 0)                         //内切
262     {
263         a[cnt] = C1.point(base);
264         b[cnt++] = C2.point(base);
265         return 1;
266     }
267     ld ang = acos((C1.r-C2.r)/sqrt(d));                 //夹角[0,PI]
268     a[cnt] = C1.point(base+ang);
269     b[cnt++] = C2.point(base+ang);
270     a[cnt] = C1.point(base-ang);
271     b[cnt++] = C2.point(base-ang);
272     if(sgn(d-rsum*rsum))                                //外切
273     {
274         a[cnt] = C1.point(base);
275         b[cnt++] = C2.point(base+PI);
276     }
277     else if(d > rsum*rsum)                              //相离
278     {
279         ld ang = acos((C1.r+C2.r)/sqrt(d));
280         a[cnt] = C1.point(base+ang);
281         b[cnt++] = C2.point(base+ang);
282         a[cnt] = C1.point(base-ang);
283         b[cnt++] = C2.point(base-ang);
284     }
285     return cnt;                                         //切点个数
286 }
287
288 //三点外接圆
289 //返回外接圆的个数
290 ll CircumscribedCircle(POINT a, POINT b, POINT c, CIRCLE &C)
291 {
292     if(sgn(cross(a-b, b-c)) == 0)   return 0;           //三点共线
293     LINE L1, L2;
294     PerpendicularBisector(a, b, L1);
295     PerpendicularBisector(b, c, L2);
296     POINT p;
297     LineLineIntersection(L1, L2, p);
298     C.c = p;
299     C.r = vlen(p-a);
300     return 1;
301 }
302
303 //三点内接圆
304 //返回内接圆的个数
305 ll InscribedCircle(POINT a, POINT b, POINT c, CIRCLE &C)
306 {
307     if(sgn(cross(a-b, b-c)) == 0)   return 0;           //三点共线
308     LINE L1 = LINE(a, (vagl(b-a)+vagl(c-a))/2), L2 = LINE(b, (vagl(a-b)+vagl(c-b))/2);
309     POINT p;
310     LineLineIntersection(L1, L2, p);
311     C.c = p;
312     C.r = PLdist(p,LINE(a,b-a));
313     return 1;
314 }
315
316
317 int main()
318 {
319     //UVA-12304
320     //ios::sync_with_stdio(false);
321     string str;
322     while(cin >> str)
323     {
324         if(str == "CircumscribedCircle")
325         {
326             POINT a, b, c;
327             cin >> a.x >> a.y >> b.x >> b.y >> c.x >> c.y;
328             CIRCLE C;
329             CircumscribedCircle(a,b,c,C);
330             cout << fixed << "(" << C.c.x << "," << C.c.y << "," << C.r << ")" << endl;
331         }
332         else if(str == "InscribedCircle")
333         {
334             POINT a, b, c;
335             cin >> a.x >> a.y >> b.x >> b.y >> c.x >> c.y;
336             CIRCLE C;
337             InscribedCircle(a,b,c,C);
338             cout << fixed << "(" << C.c.x << "," << C.c.y << "," << C.r << ")" << endl;
339         }
340         //求已知圆的切线的极角
341         else if(str == "TangentLineThroughPoint")
342         {
343             CIRCLE C;
344             POINT p;
345             cin >> C.c.x >> C.c.y >> C.r >> p.x >> p.y;
346             VECTOR v[2];
347             ll cnt = Tangents(p,C,v);
348             cout << "[";
349             if(cnt == 1)
350             {
351                 ld r = vagl(v[0]);
352                 ld a = (sgn(r) < 0 ? PI+r : sgn(r-PI) == 0 ? 0 : r)*180/PI;
353                 cout << fixed << a;
354             }
355             else if(cnt == 2)
356             {
357                 ld mxr = vagl(v[0]);
358                 ld mir = vagl(v[1]);
359                 ld mxa = (sgn(mxr) < 0 ? PI+mxr : sgn(mxr-PI) == 0 ? 0 : mxr)*180/PI;
360                 ld mia = (sgn(mir) < 0 ? PI+mir : sgn(mir-PI) == 0 ? 0 : mir)*180/PI;
361                 if(mxa < mia)   swap(mxa,mia);
362                 cout << fixed << mia << "," << mxa;
363             }
364             cout << "]" << endl;
365         }
366         //求过定点且与已知直线相切的圆的圆心
367         else if(str == "CircleThroughAPointAndTangentToALineWithRadius")
368         {
369             CIRCLE P;
370             POINT p1, p2;
371             cin >> P.c.x >> P.c.y >> p1.x >> p1.y >> p2.x >> p2.y >> P.r;
372             VECTOR v = rot(p2-p1,PI/2);
373             ld t = P.r/vlen(v);
374             LINE L1 = LINE(p1+t*v,p2-p1), L2 = LINE(p1-t*v,p2-p1);
375             ll cnt = 0;
376             ld t1, t2;
377             vector <POINT> C;
378             cnt += LineCircleIntersection(L1,P,t1,t2,C);
379             cnt += LineCircleIntersection(L2,P,t1,t2,C);
380             sort(C.begin(),C.end());
381             cout << "[";
382             if(cnt == 1)    cout << fixed << "(" << C[0].x << "," << C[0].y << ")";
383             else if(cnt == 2)   cout << fixed << "(" << C[0].x << "," << C[0].y << ")" << "," << "(" << C[1].x << "," << C[1].y << ")";
384             cout << "]" << endl;
385         }
386         //求给定半径且与两条不相交直线相切的圆的圆心
387         else if(str == "CircleTangentToTwoLinesWithRadius")
388         {
389             POINT p1, p2, p3, p4;
390             ld r;
391             cin >> p1.x >> p1.y >> p2.x >> p2.y >> p3.x >> p3.y >> p4.x >> p4.y >> r;
392             LINE L1 = LINE(p1,p2-p1), L2 = LINE(p3,p4-p3);
393             VECTOR v1 = norm(p2-p1), v2 = norm(p4-p3);
394             LINE L11 = L1.trans(r*v1), L12 = L1.trans(-r*v1);
395             LINE L21 = L2.trans(r*v2), L22 = L2.trans(-r*v2);
396             vector <POINT> C;
397             POINT p;
398             LineLineIntersection(L11,L21,p);
399             C.push_back(p);
400             LineLineIntersection(L11,L22,p);
401             C.push_back(p);
402             LineLineIntersection(L12,L21,p);
403             C.push_back(p);
404             LineLineIntersection(L12,L22,p);
405             C.push_back(p);
406             sort(C.begin(),C.end());
407             cout << "[";
408             cout << fixed << "(" << C[0].x << "," << C[0].y << ")" << "," << "(" << C[1].x << "," << C[1].y << ")" << ",";
409             cout << fixed << "(" << C[2].x << "," << C[2].y << ")" << "," << "(" << C[3].x << "," << C[3].y << ")";
410             cout << "]" << endl;
411
412         }
413         else if(str == "CircleTangentToTwoDisjointCirclesWithRadius")
414         {
415             CIRCLE C1, C2;
416             ld r;
417             cin >> C1.c.x >> C1.c.y >> C1.r >> C2.c.x >> C2.c.y >> C2.r >> r;
418             C1.r += r, C2.r += r;
419             vector <POINT> p;
420             ll cnt = CircleCircleIntersection(C1,C2,p);
421             sort(p.begin(),p.end());
422             cout << "[";
423             if(cnt == 1)
424             {
425                 cout << fixed << "(" << p[0].x << "," << p[0].y << ")";
426             }
427             else if(cnt == 2)
428             {
429                 cout << fixed << "(" << p[0].x << "," << p[0].y << ")" << "," << "(" << p[1].x << "," << p[1].y << ")";
430             }
431             cout << "]" << endl;
432         }
433     }
434     return 0;
435 }

3. 半平面

  1 /*****************************************************************
  2                             半平面交
  3 【注意】三角与反三角最多用一次(损失精度大)。
  4 【注意】数组下标一律从1开始。
  5 *****************************************************************/
  6
  7 //#include <bits/stdc++.h>
  8 #include <iostream>
  9 #include <cstring>
 10 #include <cstdlib>
 11 #include <iomanip>
 12 #include <stack>
 13 #include <cstdio>
 14 #include <cmath>
 15 #include <algorithm>
 16 #define re register
 17 #define il inline
 18 #define ll int
 19 #define ld double
 20 using namespace std;
 21 const ld PI = 3.14159265358979323846;
 22 const ll MAXN = 5e5+5;
 23 const ld INF = 1e9;
 24 const ld EPS = 1e-8;
 25
 26 //点坐标
 27 struct POINT
 28 {
 29     ld x, y;
 30     POINT() : x(0), y(0) {}
 31     POINT(ld _x, ld _y) : x(_x), y(_y) {}
 32 };
 33 //向量
 34 typedef POINT VECTOR;
 35
 36 //符号函数
 37 ll sgn(ld x)    {return x < -EPS ? -1 : x > EPS;}
 38 //向量+向量=向量,点+向量=点
 39 VECTOR operator + (VECTOR a, VECTOR b)  {return {a.x+b.x,a.y+b.y};}
 40 //向量-向量=向量,点-点=向量
 41 VECTOR operator - (VECTOR a, VECTOR b)  {return {a.x-b.x,a.y-b.y};}
 42 //向量*数=向量
 43 VECTOR operator * (VECTOR a, ld k)  {return {a.x*k,a.y*k};}
 44 VECTOR operator * (ld k, VECTOR a)  {return {a.x*k,a.y*k};}
 45 //向量/数=向量
 46 VECTOR operator / (VECTOR a, ld k)  {return {a.x/k,a.y/k};}
 47 //向量==向量,点==点
 48 bool operator == (const VECTOR a, const VECTOR b)   {return !sgn(a.x-b.x) && !sgn(a.y-b.y);}
 49 //向量偏序关系(先x轴再y轴)
 50 bool operator < (const VECTOR a, const VECTOR b)    {return !sgn(a.x-b.x) ? a.y < b.y : a.x < b.x;}
 51 //取下端点
 52 POINT min(POINT p1, POINT p2)   {return p1.y<p2.y ? p1:p2;}
 53 //取上端点
 54 POINT max(POINT p1, POINT p2)   {return p1.y<p2.y ? p2:p1;}
 55 //点积
 56 ld dot(POINT p1, POINT p2, POINT p) {return (p.x-p1.x)*(p2.x-p1.x)+(p.y-p1.y)*(p2.y-p1.y);} //(三点式:共p1端点)
 57 ld dot(VECTOR a, VECTOR b)      {return a.x*b.x+a.y*b.y;}   //向量式
 58 //叉积
 59 ld cross(POINT p1, POINT p2, POINT p)   {return (p.x-p1.x)*(p2.y-p1.y)-(p.y-p1.y)*(p2.x-p1.x);} //(三点式:共p1端点)
 60 ld cross(VECTOR a, VECTOR b)    {return a.x*b.y-a.y*b.x;}   //向量式(aXb)
 61 //向量长度
 62 ld vlen(VECTOR a) {return sqrt(dot(a,a));}
 63 //向量旋转(逆时针)
 64 VECTOR rot(VECTOR a, ld sita)   {return {a.x*cos(sita)-a.y*sin(sita),a.x*sin(sita)+a.y*cos(sita)};}
 65 //取单位向量
 66 VECTOR unit(VECTOR a)   {return a/vlen(a);}
 67 //取正交单位向量
 68 VECTOR norm(VECTOR a)   {return VECTOR(-a.y,a.x)/vlen(a);}
 69 //向量夹角余弦值
 70 ld vcos(VECTOR a, VECTOR b) {return dot(a,b)/(vlen(a)*vlen(b));}
 71 //向量夹角正弦值
 72 ld vsin(VECTOR a, VECTOR b) {return fabs(cross(a,b))/(vlen(a)*vlen(b));}
 73 //向量极角
 74 //【注意】使用系统反三角函数返回nan是因为超出了定义域(大多数由于精度造成)
 75 //【注意】故使用系统反三角函数需处理边界
 76 ld vagl(VECTOR a, VECTOR b)
 77 {
 78     ld d = dot(a,b)/(vlen(a)*vlen(b));
 79     if(sgn(d-1) == 0)   return 0;
 80     else if(sgn(d+1) == 0)  return PI;
 81     else    return acos(d);
 82 }  //向量间[0,PI]
 83 ld vagl(VECTOR a) {return atan2(a.y, a.x);}                 //单向量[-PI,PI]
 84
 85 //凸包
 86 ll vexcnt = 0;      //凸包顶点数
 87 POINT xy[MAXN], xyt[MAXN];     //多边形顶点存储,临时多边形顶点存储
 88 POINT convex[MAXN]; //凸包顶点数组
 89
 90 //求凸包周长
 91 ld convexperimeter(POINT *poly, ll n)
 92 {
 93     ld ans = 0;
 94     for(re ll i = 1; i <= n; ++i)
 95     {
 96         ans += vlen(poly[i]-poly[i%n+1]);
 97     }
 98     return ans;
 99 }
100 //计算多边形面积
101 ld polygonarea(POINT *poly, ll n)
102 {
103     ld aera = 0;
104     for(re ll i = 0; i < n; ++i)
105     {
106         aera += cross(poly[i+1], poly[(i+1)%n+1]);
107     }
108     return fabs(aera)/2;        //不加绝对值为有向面积
109 }
110
111 //andrew算法求凸包(凸包数组正序为逆时针)
112 //1.严格凸包(没有重复点和三点共线)2.非严格凸包(允许重复点和三点共线)
113 void andrew(ll n)
114 {
115     vexcnt = 0;                            //初始化数据
116     memcpy(xyt,xy,sizeof(xy));          //备份原来顶点集
117     sort(xyt+1,xyt+n+1);                //排序后xyt[1]和xyt[n]一定在凸包中
118     //求解凸包顶点集
119     //正向扫描(下凸包)
120     convex[++vexcnt] = xyt[1];          //xyt[1]一定在凸包中
121     ll j = 2;
122     while(j <= n)
123     {
124         if(vexcnt <= 1)                 //因为xyt[2]不一定在凸包集中
125         {
126             convex[++vexcnt] = xyt[j++];
127         }
128         else
129         {
130             //取前面两个点
131             //严格凸包:sgn(cross(convex[vexcnt]-convex[vexcnt-1],xyt[j]-convex[vexcnt]))>0
132             //非严格凸包:sgn(cross(convex[vexcnt]-convex[vexcnt-1],xyt[j]-convex[vexcnt]))>=0
133             if(sgn(cross(convex[vexcnt]-convex[vexcnt-1],xyt[j]-convex[vexcnt]))>=0)  convex[++vexcnt] = xyt[j++];
134             else    --vexcnt;
135         }
136     }
137     //反向扫描(上凸包)
138     //至少包含了xyt[1]和xyt[n]
139     ll record = vexcnt;                 //记录下凸包的结果
140     ll k = n-1;
141     while(k >= 1)
142     {
143         if(vexcnt <= record)
144         {
145             convex[++vexcnt] = xyt[k--];
146         }
147         else
148         {
149             //取前面两个点
150             //严格凸包:sgn(cross(convex[vexcnt]-convex[vexcnt-1],xyt[k]-convex[vexcnt]))>0
151             //非严格凸包:sgn(cross(convex[vexcnt]-convex[vexcnt-1],xyt[k]-convex[vexcnt]))>=0
152             if(sgn(cross(convex[vexcnt]-convex[vexcnt-1],xyt[k]-convex[vexcnt]))>0)  convex[++vexcnt] = xyt[k--];
153             else    --vexcnt;
154         }
155     }
156     while(convex[--vexcnt]==convex[1]);     //因为和xyt[1]相等的点都在下凸包中了
157     //for(re ll i = 1; i <= vexcnt; ++i)    cout << "(" << convex[i].x << "," << convex[i].y << ")" << endl;
158     return;
159 }
160
161 //直线
162 struct LINE
163 {
164     POINT p;   //直线上定点
165     VECTOR v;   //直线方向向量
166     LINE() {}
167     //点向式
168     LINE(POINT _p, VECTOR _v):p(_p), v(_v) {}
169     //点角式
170     LINE(POINT _p, ld a):p(_p), v(VECTOR(cos(a), sin(a))) {}
171     //通过参数t唯一确定直线上点坐标(点向式:P = p + t*v)
172     POINT point(ld t)   {return p + t*v;}
173     //平移向量r
174     LINE trans(VECTOR r)    {return LINE(p+r,v);}
175 };
176
177 //有向直线
178 struct DIRLINE
179 {
180     POINT p;        //定点
181     VECTOR v;       //方向向量
182     ld a;           //极角
183     DIRLINE() {}
184     DIRLINE(POINT _p, VECTOR _v):p(_p),v(_v),a(atan2(v.y,v.x)) {}
185     bool operator < (const DIRLINE &DL) const    {return a < DL.a;}
186 };
187
188 //点到直线距离
189 ld PLdist(POINT p, LINE L) {return fabs(sin(vagl(p-L.p,L.v))*vlen(p-L.p));}
190 //点在有向直线左边
191 bool OnLeft(DIRLINE DL, POINT p) {return sgn(cross(DL.v,p-DL.p)) > 0;}
192 //点在有向直线右边
193 bool OnRight(DIRLINE DL, POINT p)   {return sgn(cross(DL.v,p-DL.p)) < 0;}
194
195 //两点中垂线
196 //返回中垂线的个数
197 ll PerpendicularBisector(POINT p1, POINT p2, LINE &L)
198 {
199     if(p1 == p2)    return 0;
200     L.p = (p1+p2)/2;
201     L.v = rot(p2-p1, PI/2);
202     return 1;
203 }
204
205 //两直线交点
206 POINT LLitesct;
207
208 //直线与直线的交点
209 //返回交点个数
210 ll LineLineIntersection(LINE L1, LINE L2, POINT &p)
211 {
212     if(sgn(cross(L1.v, L2.v)) == 0)
213     {
214         if(sgn(cross(L2.p-L1.p,L2.v)) == 0)   return -1;          //两直线重合
215         else    return 0;                       //两直线平行
216     }
217     //以L1为准
218     ld t1 = -cross(L2.p-L1.p, L2.v)/cross(L2.v, L1.v);
219     p = L1.p + t1*L1.v;
220     //以L2为准
221     //ld t2 = -cross(L1.p-L2.p, L1.v)/cross(L1.v, L2.v);
222     //p = L2.p + t2*L2.v;
223     return 1;
224 }
225 ll LineLineIntersection(DIRLINE DL1, DIRLINE DL2, POINT &p)
226 {
227     if(sgn(cross(DL1.v, DL2.v)) == 0)
228     {
229         if(sgn(cross(DL2.p-DL1.p,DL2.v)) == 0)    return -1;          //两直线重合
230         else    return 0;                       //两直线平行
231     }
232     //以L1为准
233     ld t1 = -cross(DL2.p-DL1.p, DL2.v)/cross(DL2.v, DL1.v);
234     p = DL1.p + t1*DL1.v;
235     //以L2为准
236     //ld t2 = -cross(L1.p-L2.p, L1.v)/cross(L1.v, L2.v);
237     //p = L2.p + t2*L2.v;
238     return 1;
239 }
240
241 //半平面交
242 //返回凸包顶点数
243 //【注意】若半平面交可能是无界区域,则需在外面加一个坐标很大的包围框
244 ll HalfPlaneIntersection(DIRLINE *DL, ll n, POINT *poly)
245 {
246     sort(DL+1,DL+n+1);
247     ll first, last;                 //双端队列的首尾元素下标
248     DIRLINE *q = new DIRLINE[n+1];    //双端队列
249     POINT *p = new POINT[n+1];        //p[i]为q[i]和q[i+1]的交点
250     first = last = 1;
251     q[1] = DL[1];                   //初始化只有一个半平面L[0]
252     for(re ll i = 2; i <= n; ++i)
253     {
254         while(first < last && !OnLeft(DL[i], p[last-1])) --last;
255         while(first < last && !OnLeft(DL[i], p[first])) ++first;
256         q[++last] = DL[i];
257         if(sgn(cross(q[last].v, q[last-1].v)) == 0)         //两向量平行
258         {
259             --last;
260             if(OnLeft(q[last], DL[i].p)) q[last] = DL[i];   //同向取内测的一个
261         }
262         if(first < last)    LineLineIntersection(q[last-1],q[last],p[last-1]);
263     }
264     while(first < last && !OnLeft(q[first],p[last-1]))  --last;
265     //删除无用平面
266     if(last-first <= 1) return 0;                       //空集
267     LineLineIntersection(q[last],q[first],p[last]);     //计算首尾两个半平面交的交点
268     ll cnt = 0;
269     for(re ll i = first; i <= last; ++i)    poly[++cnt] = p[i];
270     return cnt;
271 }
272
273 int main()
274 {
275     //UVALive-3890
276     ios::sync_with_stdio(false);
277     ll n;
278     //scanf("%lld", &n);
279     while(cin >> n)
280     //while(~scanf("%d", &n))
281     {
282         if(n == 0)  break;
283         POINT *p = new POINT[n+1];
284         for(re ll i = 1; i <= n; ++i)
285         {
286             cin >> p[i].x >> p[i].y;
287             //scanf("%lf%lf%lf%lf", &p1.x, &p1.y, &p2.x, &p2.y);
288         }
289         VECTOR *v = new VECTOR[n+1];
290         VECTOR *r = new VECTOR[n+1];
291         for(re ll i = 1; i <= n; ++i)
292         {
293             v[i] = p[i%n+1]-p[i];
294             r[i] = norm(v[i]);      //单位正交向量
295         }
296         //二分答案
297         ld left = 0, right = 20000;
298         DIRLINE *DL = new DIRLINE[n+1];
299         POINT *poly = new POINT[n+1];
300         while(right-left > 1e-6)
301         {
302             ld mid = (left+right)/2;
303             for(re ll i = 1; i <= n; ++i)
304             {
305                 DL[i] = DIRLINE(p[i]+r[i]*mid,v[i]);
306             }
307             ll cnt = HalfPlaneIntersection(DL,n,poly);
308             if(!cnt)    right = mid;
309             else    left = mid;
310         }
311         cout << fixed << setprecision(6) << left << endl;
312     }
313     return 0;
314 }

原文地址:https://www.cnblogs.com/BlueHeart0621/p/12238221.html

时间: 2024-10-05 03:09:42

二维几何基础的相关文章

计算几何--二维几何基础练习

内容参考书籍——<算法竞赛入门经典训练指南> 例题1 题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2119 莫利定理(Morley's theorem),也称为莫雷角三分线定理.将三角形的三个内角三等分,靠近某边的两条三分角线相交得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.

二维码扫码积分系统定制开发

微信积分系统 二维码扫码积分系统定制开发找丽姐[158.1816.6626/电微]二维码营销模式系统定制开发 微信扫二维码营销系统开发 扫码领积分系统开发 一.如何实现扫二维码领红包功能? 1.使用扫描二维码领取红包对活动进行设置,包括红包数量.红包金额.促销地区.中奖概率等. 2.将生成的二维码赋到商品上面并赋涂层,一方面可以起到保证二维码的一次性,另一方面也可以引起消费者的好奇心. 3.通过手机微信打开扫一扫,扫码商品二维码关注公众号并领取红包,如果参与分享还可以获得抽奖的机会. 二.微信扫

微信生成二维码 只需一个网址即刻 还有jquery生成二维码

<div class="orderDetails-info"> <img src="http://qr.topscan.com/api.php?text=http://123.net/index.php?s=/Home/Index/yanzheng/mai/{$dange.id}" style="width: 5rem; margin-bottom: 1rem;" > </div> http://qr.tops

家电二维码售后服务平台系统开发

家电二维码售后服务平台系统开发,家电二维码售后系统开发,小吴183.2071.6434微电,家电二维码售后软件开发,家电二维码售后平台开发. 互联网平台的节点有两大类型:第一基数节点,也就是弱连接的节点,其规模要大,越大越好,互联网的价值与节点数的平比成正比.第二活跃节点,也就是强连接的节点,其能量要强,越强越好,互联网的价值与其强度成正比. 一.家电维修行业"维修黑幕"层出不穷 记者从一位从事家电维修人士那里了解到,目前行业公认当前家电维修行业有陷阱,"维修黑幕"

微信小程序(4)--二维码窗口

微信小程序二维码窗口: <view class="btn" bindtap="powerDrawer" data-statu="open">button</view> <!--mask--> <view class="drawer_screen" bindtap="powerDrawer" data-statu="close" wx:if=&qu

微信服务器与项目服务器的交互(关注功能、微信扫描带参数二维码)

<?php /** * wechat php test */ //define your token define("TOKEN", "txtj"); $wechatObj = new wechatCallbackapiTest(); if (isset($_GET['echostr'])) { $wechatObj->valid(); }else{ $wechatObj->responseMsg(); } class wechatCallback

14-高效求最长公共子序列(二维数组存不下)

/*                                   See LCS again时间限制:1000 ms  |  内存限制:65535 KB难度:3 描述 There are A, B two sequences, the number of elements in the sequence is n.m; Each element in the sequence are different and less than 100000. Calculate the length

【二维树状数组】See you~

https://www.bnuoj.com/v3/contest_show.php?cid=9148#problem/F [题意] 给定一个矩阵,每个格子的初始值为1.现在可以对矩阵有四种操作: A x y n1 :给格点(x,y)的值加n1 D x y n1: 给格点(x,y)的值减n1,如果现在格点的值不够n1,把格点置0 M x1 y1 x2 y2:(x1,y1)移动给(x2,y2)n1个 S x1 y1 x2 y2 查询子矩阵的和 [思路] 当然是二维树状数组 但是一定要注意:lowbi

java基础:java中的二维数组

二维数组的概念: 一个元素为一维数组的数组. 格式1: 数据类型[][] 数组名 = new 数据类型[m][n]; m:表示这个二维数组有多少个一维数组. n:表示每一个一维数组的元素有多少个. 注意: A:以下格式也可以表示二维数组 a:数据类型 数组名[][] = new 数据类型[m][n]; b:数据类型[] 数组名[] = new 数据类型[m][n]; B:注意下面定义的区别 int x; int y; int x,y; int[] x; int[] y[]; int[] x,y[