【bzoj4671】异或图(容斥+斯特林反演+线性基)

传送门

题意:
给出\(s,s\leq 60\)张图,每张图都有\(n,n\leq 10\)个点。
现在问有多少个图的子集,满足这些图的边“异或”起来后,这张图为连通图。

思路:

  • 直接考虑判断图的连通不好判断,所以考虑枚举连通块来进行容斥。
  • 定义\(f_i\)表示有\(i\)个连通块的答案,发现连通块这个东西也不好处理,我们只能处理出有多少个连通块,但无法确定每个连通块内部的连通关系。
  • 定义\(g_i\)为至少有\(i\)个连通块的方案数,那么就有关系式:\(\displaystyle g_i=\sum_{j=i}^n \begin{Bmatrix} j \\ i \end{Bmatrix}f_j\)。至于为什么要乘以一个第二类斯特林数,相当于我们将单个的连通块再进行组合,有不同的组合方式。
  • 此时\(g_i\)就相当于有\(i\)个连通块,内部可连通可不连通的方案数。
  • 因为最终所求为\(f_1\),通过斯特林反演可得:\(\displaystyle f_1=\sum_{i=1}^n(-1)^{i-1}\begin{bmatrix} i \\ 1 \end{bmatrix}g_i\)。那么现在只需要算\(g_i\)即可。
  • 因为点数很少,可以直接枚举子集划分,我们只需要保证最后不同的集合之间没有边相连即可。
  • 当确定了一种子集划分过后,将连接不同集合的边拿出来,将每张图这类边转为二进制插入线性基中,最后的基为\(c\)个,那么答案就为\(2^{s-c}\)。
  • 将答案累加入\(f_i\)即可。

这个题大概就这样做完了,但还有一些小细节,其中,斯特林反演的时候和常见形式稍有不同,但可以通过反转公式证明:
\[
\left\{
\begin{aligned}
&\sum_{k=m}^n(-1)^{n-k}\begin{bmatrix}
n \\ k
\end{bmatrix}\begin{Bmatrix}
k \\ m
\end{Bmatrix}=[n=m]\ &\sum_{k=m}^n(-1)^{k-m}\begin{Bmatrix}
n \\ k
\end{Bmatrix}\begin{bmatrix}
k \\ m
\end{bmatrix}=[n=m]
\end{aligned}
\right.
\]
最后的答案为\(2^{s-c}\)的原因在于,我们相当于来求若干个数异或起来为\(0\)的方案数,每个图用\(x_i\)来表示其最终状态,那么如果有\(c\)个基,说明就有\(s-c\)个自由变量,对于任意一组自由变量的取值,我们都能找到一组唯一的对应的解满足方程。
其实这个本质上就是求解一个异或方程组。
代码如下:

/*
 * Author:  heyuhhh
 * Created Time:  2019/12/17 15:36:21
 */
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#include <cmath>
#include <set>
#include <map>
#include <queue>
#include <iomanip>
#define MP make_pair
#define fi first
#define se second
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
#define Local
#ifdef Local
  #define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
  void err() { std::cout << '\n'; }
  template<typename T, typename...Args>
  void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
#else
  #define dbg(...)
#endif
void pt() {std::cout << '\n'; }
template<typename T, typename...Args>
void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 105;

int s, n;
char ch[N];
int G[N][N][N];
int a[N];
ll p[64], fac[N];
ll ans;

void dfs(int x, int up) {
    if(x == n) {
        memset(p, 0, sizeof(p));
        int c = 0;
        for(int k = 1; k <= s; k++) {
            ll res = 0;
            int tot = 0;
            for(int i = 1; i <= n; i++) {
                for(int j = i + 1; j <= n; j++) {
                    if(a[i] != a[j]) res |= ((ll)G[k][i][j] << tot);
                    ++tot;
                }
            }
            for(int i = tot; i >= 0; i--) if(res >> i & 1) {
                if(!p[i]) {
                    ++c; p[i] = res;
                    break;
                }
                res ^= p[i];
            }
        }
        if(up & 1) ans += fac[up - 1] * (1ll << (s - c));
        else ans -= fac[up - 1] * (1ll << (s - c));
        return;
    }
    for(int i = 1; i <= up + 1; i++) {
        a[x + 1] = i; dfs(x + 1, max(i, up));
    }
}

void run(){
    fac[0] = 1;
    for(int i = 1; i < 12; i++) fac[i] = fac[i - 1] * i;
    for(int k = 1; k <= s; k++) {
        cin >> (ch + 1);
        int len = strlen(ch + 1), cnt = 0;
        for(int j = 1; !n; j++) if(j * (j - 1) == 2 * len) n = j;
        for(int i = 1; i <= n; i++) {
            for(int j = i + 1; j <= n; j++) {
                G[k][i][j] = ch[++cnt] - '0';
            }
        }
    }
    a[1] = 1;
    dfs(1, 1);
    cout << ans << '\n';
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0); cout.tie(0);
    cout << fixed << setprecision(20);
    while(cin >> s) run();
    return 0;
}

原文地址:https://www.cnblogs.com/heyuhhh/p/12056370.html

时间: 2024-10-09 16:29:30

【bzoj4671】异或图(容斥+斯特林反演+线性基)的相关文章

bzoj 4671 异或图 —— 容斥+斯特林反演+线性基

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方案数: 我们希望得到恰好有一个连通块的方案数,但这里不能直接 \( + t[1] - t[2] + t[3] - t[4] ... \),因为每个"恰好 \( i \) 个连通块"的情况并不是在各种 \( t[j] ( j<=i ) \) 中只被算了一次,而是因为标号,被算了 \(

bzoj4671: 异或图

Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中, 否则这条边不在 G 中. 现在给定 s 个结点数相同的图 G1...s, 设 S = {G1, G2, . . . , Gs}, 请问 S 有多少个子集的异 或为一个连通图? Input 第一行为一个整数s, 表图的个数. 接下来每一个二进制串, 第 i 行的二进制串为 gi, 其中 gi 是原图通过

cf900D. Unusual Sequences(容斥 莫比乌斯反演)

题意 题目链接 Sol 首先若y % x不为0则答案为0 否则,问题可以转化为,有多少个数列满足和为y/x,且整个序列的gcd=1 考虑容斥,设\(g[i]\)表示满足和为\(i\)的序列的方案数,显然\(g[i] = 2^{i-1}\)(插板后每空位放不放) 同时还可以枚举一下gcd,设\(f[i]\)表示满足和为\(i\)且所有数的gcd为1的方案,\(g[i] = \sum_{d | i} f[\frac{n}{d}]\) 反演一下,\(f[i] = \sum_{d | i} \mu(d)

【二分+容斥+莫比乌斯反演】BZOJ2440 完全平方数

Description 求第k个没有完全平方因子的数,k<=1e9. Solution 这其实就是要求第k个µ[i](莫比乌斯函数)不为0的数. 然而k太大数组开不下来是吧,于是这么处理. 二分答案x,问题转化为求[1,x]间有多少个没有完全平方因子的数. 容斥,加上全部,减去一个质数的平方的倍数个数,加上两个质数乘积的平方的倍数个数... 然后发现,每个数的系数就是µ 这也说明了莫比乌斯的原理就是容斥,µ函数就是容斥系数 具体来说,对于每一个i<=sqrt(x),对于ans的贡献就是µ[i]

P5169 xtq的异或和(FWT+线性基)

传送门 我咋感觉我学啥都是白学-- 首先可以参考一下这一题,从中我们可以知道只要知道两点间任意一条路径以及整个图里所有环的线性基,就可以得知这两个点之间的所有路径的异或和 然而我好像并不会求线性基能张成的元素--话说原来这个在线性基里爆搜就可以了么-- 于是我们可以随便选一个点为根,\(dfs\)一遍跑出个生成树,\(dis[u]\)表示点\(u\)到根节点的路径上的异或和,那么\(dis[u]\bigoplus dis[v]\)就是\(u,v\)之间的一条路径的权值,设\(x\)为一个线性基能

【BZOJ4671】 异或图

Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中, 否则这条边不在 G 中. 现在给定 s 个结点数相同的图 G1...s, 设 S = {G1, G2, . . . , Gs}, 请问 S 有多少个子集的异 或为一个连通图? Input 第一行为一个整数s, 表图的个数. 接下来每一个二进制串, 第 i 行的二进制串为 gi, 其中 gi 是原图通过

Coprime (单色三角形+莫比乌斯反演(数论容斥))

这道题,先说一下单色三角形吧,推荐一篇noip的论文<国家集训队2003论文集许智磊> 链接:https://wenku.baidu.com/view/e87725c52cc58bd63186bd1b.html?from=search 单色三角形指的是n个顶点,有n(n-1)条边,很明显是每个点两两相连,那么这样所形成的所有三角形的边假如有两种颜色:红和黑.那么问一共有多少三角形的三边是一种颜色的个数. ,建议看一下那个论文,因为我只能直接给出你结论.  下面的数学符号:{...}为概率论中表

HDU 1695 GCD(容斥 or 莫比乌斯反演)

这题可以用容斥做,然而效率并不高.. 于是学了下莫比乌斯反演(资料百度找) 求出mo数组后 设f(x)为gcd为x的种数 F(x)为gcd为x倍数的种数 那么显然F(x) = (b / x) * (d / x) 莫比乌斯反演之后,得到f(x) = sum(mo[i] * F(i)). 然后还要容斥减去对称重复的.对称重复的情况为min(b, d)小的中,求一遍除2,(因为存在x = y的情况只有(1,1)一种) 最后还要注意特判下k == 0的情况 代码: #include <cstdio>

[bzoj3622]已经没有什么好害怕的了——容斥or二项式反演+DP

题目大意: 给定两个长度为\(n\)的序列,求有多少种匹配方式,使得\(a_i<b_i\)的个数恰好为\(k\)个. 思路: 据说是一道二项式反演的经典例题了. 首先如果要求正好等于\(k\)个的是不太好求的,我们可以考虑求出至少为\(k\)个的方案数. 首先先把两个序列都按照从小到大的顺序排好序,然后以序列\(b\)为对象dp. 我们设\(f_{i,j}\)表示前\(i\)个数里面强制确定了\(j\)个\(a_i<b_i\)关系的方案数,记\(c_i\)表示在\(a\)中有多少个数<\