UOJ#339. 【清华集训2017】小 Y 和二叉树 贪心

原文链接 www.cnblogs.com/zhouzhendong/p/UOJ339.html

前言

好久没更博客了,前来更一发。

题解

首先,我们考虑一个子问题:给定根,求出最小中序遍历。

如果根节点有一个儿子,那么,我们需要比较根节点和 儿子的最小中序遍历的第一个元素,选择较优的一方放在前面。

如果根节点有两个儿子,那么,我们必然选择最小中序遍历较小的儿子放在左儿子。

由于所有节点编号互不相同,所以我们在比较两个部分的字典序时,只关注第一个元素的大小。

可以发现,一个有两个儿子的节点是不可能作为以它为根的子树的最小字典序的第一个元素的,接着,我们发现,除了这些节点之外的节点都可以作为最小字典序的第一个元素,构造方法如图所示:

所以我们将子树中这类节点编号的最小值较小的节点作为左子树即可。

然后我们考虑不定根的情况。

首先,我们关注最小字典序的第一元素,它一定是度数小于3的最小编号节点。我们以这个节点为根处理出每一个子树的最小字典序的第一个元素,并将左右儿子中字典序较小的一方放在左儿子。

我们将这个节点设为 x 。

如果 x 的度数为 2,那么,选择字典序较小的子树作为它的右子树,将其另一个子树的根的左儿子(对于这棵子树,我们就用之前提到的有根树的方式来解决),然后切除这条边,让这个子树的根取代 x ,并继续重复执行类似操作。

如果 x 的度数为 1,设 x 的儿子为 y。

如果 y 有儿子,那么,y、y 的左子树的最小字典序的第一个元素 都可能作为下一个元素,所以我们要取较优的一方:假设让 y 作为下一个元素,那么令最终构造方案中 y 的左儿子为 x,然后切除 x 与 y 之间的边,让 y 取代 x,并重复执行类似操作;如果选择 y 的左子树,那么就令 y 作为 x 的右儿子,并直接套用之前提到的有根树的解决方法来处理子树 y。

如果 y 只有一个儿子,那么,将 y 作为 x 的右儿子或者将 x 作为 y 的左儿子的效果完全相同,但是将 x 作为 y 的左儿子可以保留让 y 的儿子 z 作为 z 子树的中序遍历的最小元素的机会,所以我们选择将 x 作为 y 的左儿子。

代码

#include <bits/stdc++.h>
#define clr(x) memset(x,0,sizeof (x))
#define For(i,a,b) for (int i=a;i<=b;i++)
#define Fod(i,b,a) for (int i=b;i>=a;i--)
#define pb(x) push_back(x)
#define mp(x,y) make_pair(x,y)
#define fi first
#define se second
#define _SEED_ ('C'+'L'+'Y'+'A'+'K'+'I'+'O'+'I')
#define outval(x) printf(#x" = %d\n",x)
#define outvec(x) printf("vec "#x" = ");for (auto _v : x)printf("%d ",_v);puts("")
#define outtag(x) puts("----------"#x"----------")
#define outarr(a,L,R) printf(#a"[%d...%d] = ",L,R);                        For(_v2,L,R)printf("%d ",a[_v2]);puts("");
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef vector <int> vi;
LL read(){
    LL x=0,f=0;
    char ch=getchar();
    while (!isdigit(ch))
        f|=ch=='-',ch=getchar();
    while (isdigit(ch))
        x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
    return f?-x:x;
}
const int N=1e6+5;
int n;
vector <int> e[N];
int mi[N];
int son[N][2];
void dfs(int x,int pre){
    mi[x]=e[x].size()!=3?x:n+1;
    for (auto y : e[x])
        if (y!=pre){
            dfs(y,x);
            mi[x]=min(mi[x],mi[y]);
            son[x][son[x][0]!=0]=y;
        }
    if (mi[son[x][0]]>mi[son[x][1]])
        swap(son[x][0],son[x][1]);
}
vector <int> ans;
void calc(int x){
    if (!x)
        return;
    if (son[x][0]&&son[x][1])
        calc(son[x][0]),ans.pb(x),calc(son[x][1]);
    else if (x<mi[son[x][0]])
        ans.pb(x),calc(son[x][0]);
    else
        calc(son[x][0]),ans.pb(x);
}
void solve(int x){
    ans.pb(x);
    if (!son[x][0])
        return;
    if (son[x][1])
        calc(son[x][0]),solve(son[x][1]);
    else {
        x=son[x][0];
        if (x<=mi[x])
            solve(x);
        else
            calc(x);
    }
}
int main(){
    n=read();
    For(i,1,n){
        int k=read();
        while (k--)
            e[i].pb(read());
    }
    int x=mi[0]=n+1;
    For(i,1,n)
        if (e[i].size()!=3)
            x=min(x,i);
    dfs(x,0);
    solve(x);
    for (auto i : ans)
        printf("%d ",i);
    return 0;
}

原文地址:https://www.cnblogs.com/zhouzhendong/p/UOJ339.html

时间: 2024-10-08 01:16:27

UOJ#339. 【清华集训2017】小 Y 和二叉树 贪心的相关文章

[清华集训2017]小 Y 和地铁(神奇思路,搜索,剪枝,树状数组)

世界上最不缺的就是好题. 首先考虑暴搜.(还有什么题是从这东西推到正解的……) 首先单独一个换乘站明显没用,只用考虑一对对的换乘站. 那么有八种情况:(从题解偷图)         然后大力枚举每个换乘站的情况.同时判断交点.$O(n\times 8^{\frac{n}{2}})$. 然后考虑这种情况: 发现对于任意一条地铁线,要么与这两个都有交点,要么可以与这两个都没有交点.(其实会有与一个有两个交点,与另一个没有交点的情况.这时也可以把这条线换个方向,答案不会更差.思考思考为什么) 那么合法

【清华集训】小Y和地铁

题目: 小 $\rm Y$ 是一个爱好旅行的 $\rm OIer$.一天,她来到了一个新的城市.由于不熟悉那里的交通系统,她选择了坐地铁.她发现每条地铁线路可以看成平面上的一条曲线,不同线路的交点处一定会设有换乘站.通过调查得知,没有线路是环线,也没有线路与自身相交.任意两条不同的线路只会在若干个点上相交,没有重合的部分,且没有三线共点的情况.即,如图所示的情况都是不存在的: 小 Y 坐着地铁 $0$ 号线,路上依次经过了 $n$ 个换乘站.她记下了每个换乘站可以换乘的线路编号,发现每条线路与她

[LOJ#2325]「清华集训 2017」小Y和恐怖的奴隶主

[LOJ#2325]「清华集训 2017」小Y和恐怖的奴隶主 试题描述 "A fight? Count me in!" 要打架了,算我一个. "Everyone, get in here!" 所有人,都过来! 小Y是一个喜欢玩游戏的OIer.一天,她正在玩一款游戏,要打一个Boss. 虽然这个Boss有 \(10^{100}\) 点生命值,但它只带了一个随从--一个只有 \(m\) 点生命值的"恐怖的奴隶主". 这个"恐怖的奴隶主&qu

2017.11.26【清华集训2017】模拟

T1 5483. [清华集训2017模拟11.26]简单路径T2 5484. [清华集训2017模拟11.26]快乐树T3 5485. [清华集训2017模拟11.26]字符串 T1 结论题,结论很显然任意两条路径权异或后,会将两条路径的交的贡献删去.然后用个桶存一下出现过的异或和,暴力判一下就可以了 code 1 #include<cstdio> 2 #include<cmath> 3 #include<cstring> 4 #include<algorithm

[LOJ#2327]「清华集训 2017」福若格斯

[LOJ#2327]「清华集训 2017」福若格斯 试题描述 小d是4xx9小游戏高手. 有一天,小d发现了一个很经典的小游戏:跳青蛙. 游戏在一个 \(5\) 个格子的棋盘上进行.在游戏的一开始,最左边的两个格子上各有一个向右的青蛙,最右边的两个格子上各有一个向左的青蛙. 每次移动可以选取一个青蛙,向这只青蛙的前方移动一格到空格子中或跳过前方的一个不同朝向的青蛙并移动到空格子中. 为了使你更好地理解这个游戏,我们下发了一个游戏demo作为参考(注意:这个demo中的棋盘大小和题目中并不相同).

[LOJ#2328]「清华集训 2017」避难所

[LOJ#2328]「清华集训 2017」避难所 试题描述 "B君啊,你当年的伙伴都不在北京了,为什么你还在北京呢?" "大概是因为出了一些事故吧,否则这道题就不叫避难所了." "唔,那你之后会去哪呢?" "去一个没有冬天的地方." 对于一个正整数 \(n\),我们定义他在 \(b\) 进制下,各个位上的数的乘积为 \(p = F(n, b)\). 比如 \(F(3338, 10) = 216\). 考虑这样一个问题,已知 \

[LOJ#2331]「清华集训 2017」某位歌姬的故事

[LOJ#2331]「清华集训 2017」某位歌姬的故事 试题描述 IA是一名会唱歌的女孩子. IOI2018就要来了,IA决定给参赛选手们写一首歌,以表达美好的祝愿.这首歌一共有 \(n\) 个音符,第iii个音符的音高为 \(h_i\).IA的音域是 \(A\),她只能唱出 \(1\sim A\) 中的正整数音高.因此 \(1\le h_i\le A\). 在写歌之前,IA需要确定下这首歌的结构,于是她写下了 \(Q\) 条限制,其中第 \(i\) 条为:编号在 \(l_i\) 到 \(r_

LibreOJ #2325. 「清华集训 2017」小Y和恐怖的奴隶主(矩阵快速幂优化DP)

哇这题剧毒,卡了好久常数才过T_T 设$f(i,s)$为到第$i$轮攻击,怪物状态为$s$时对boss的期望伤害,$sum$为状态$s$所表示的怪物个数,得到朴素的DP方程$f(i,s)=\sum \frac{1}{sum+1}*(f(i+1,s')+[s==s'])$ 状态数只有$C_{8+3}^3=165$个,所以就可以矩乘优化啦.再加上一个用于转移的$1$,矩阵大小是$166*166$的,因为多组询问,所以可以先把$2$的所有次幂的矩阵都预处理出来. 然后会发现复杂度是$O(T*166^3

UOJ#346. 【清华集训2017】某位歌姬的故事 动态规划

原文链接www.cnblogs.com/zhouzhendong/p/UOJ346.html 题解 首先按照 $m_i$ 的大小排个序. 如果某一个区间和一个 m 值比他小的区间有交,那么显然可以将这个区间控制的区域删除掉重合的那一段. 如果一个区间被删没了,那么显然答案为 0 . 在这个处理之后,一个区间可能会变得不连续.那么我们就将它前后相连,变成连续的. 接下来问题变成了对每一种权值的区间算答案. 这个东西离散化之后大力DP即可. 注意特判权值为 1 的区间. 写起来好像有点麻烦. 时间复