python数据可视化:pyecharts

发现了一个做数据可视化非常好的库:pyecharts。
非常便捷好用,大力推荐!!

官方介绍:pyecharts 是一个用于生成 Echarts 图表的类库。Echarts 是百度开源的一个数据可视化 JS 库。用 Echarts 生成的图可视化效果非常棒,pyecharts 是为了与 Python 进行对接,方便在 Python 中直接使用数据生成图。

中文教程也非常具体:https://pyecharts.org/#/zh-cn/quickstart?id=%e5%a6%82%e4%bd%95%e5%ae%89%e8%a3%85

展示几个教程中有的例子。

柱状图/折线图

基本的柱状图&折线图

from pyecharts import Bar
bar = Bar("我的第一个图表", "这里是副标题")
bar.add("服装", ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"], [5, 20, 36, 10, 75, 90],is_more_utils=True)
bar

基本柱状图和折线图.gif

堆叠柱状图

from pyecharts import Bar
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [5, 20, 36, 10, 75, 90]
v2 = [10, 25, 8, 60, 20, 80]
bar = Bar("柱状图数据堆叠示例")
bar.add("商家A", attr, v1, is_stack=True)
bar.add("商家B", attr, v2, is_stack=True)
bar

堆叠柱状图.gif

还可以给柱状图加标记

带标记的柱状图.gif

散点图

from pyecharts import EffectScatter
v1 = [10, 20, 30, 40, 50, 60]
v2 = [25, 20, 15, 10, 60, 33]
es = EffectScatter("带有涟漪特效动画的动态散点图示例")
es.add("effectScatter", v1, v2)
es

带有涟漪特效的散点图.gif

动态散点图形.gif

漏斗图

from pyecharts import Funnel
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
value = [20, 40, 60, 80, 100, 120]
funnel = Funnel("漏斗图示例")
funnel.add("商品", attr, value, is_label_show=True, label_pos="inside", label_text_color="#fff")
funnel

漏斗图.gif

饼图

from pyecharts import Pie
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [11, 12, 13, 10, 10, 10]
pie = Pie("饼图示例")
pie.add("", attr, v1, is_label_show=True)
pie

饼图.gif

from pyecharts import Pie

attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [11, 12, 13, 10, 10, 10]
pie = Pie("饼图-圆环图示例", title_pos=‘center‘)
pie.add("", attr, v1, radius=[40, 75], label_text_color=None,
        is_label_show=True, legend_orient=‘vertical‘,
        legend_pos=‘left‘)
pie

圆环图.gif

仪表盘

from pyecharts import Gauge
gauge = Gauge("仪表盘示例")
gauge.add("业务指标", "完成率", 66.66)
gauge.show_config()
gauge.render()

仪表盘.png

地理坐标系

地理坐标系组件用于地图的绘制,支持在地理坐标系上绘制散点图,线集。

地理坐标系1.gif

地理坐标系2.gif

地理坐标系3.gif

上面这些只是我觉得其中常用的一小部分。除了这些,还包含3D图、关系图、热力图、K线图、水球图、树图等等。效果都是非常炫酷,好看得不行!
我尤其喜欢这个水球图。

水球图.gif

但感觉用到的机会应该不多。。。

总之,非常推荐这个python数据可视化工具!!强大好用,效果炫酷,也支持numpy和pandas,非常便捷。

此外,它的地理坐标系部分,原来中国地图是默认的,现在不是了,需要另外下载一个地图包,在官网的这里:
http://pyecharts.org/#/zh-cn/customize_map?id=%E5%A6%82%E4%BD%95%E8%8E%B7%E5%BE%97%E6%9B%B4%E5%A4%9A%E5%9C%B0%E5%9B%BE
要是按照教程没有下载的话,中国地图会只显示南海诸岛,没有大陆的轮廓。

来源: https://www.2cto.com/kf/201803/730093.html

原文地址:https://www.cnblogs.com/kaibindirver/p/11657396.html

时间: 2024-09-29 18:14:43

python数据可视化:pyecharts的相关文章

python数据可视化案例——平行坐标系(使用pyecharts或pandas)

平行坐标是可视化高维几何和分析多元数据的常用方法. 为了在n维空间中显示一组点,绘制由n条平行线组成的背景,通常是垂直且等距的.所述的点N 维空间被表示为折线与顶点在平行的轴线: 第i 轴上顶点的位置对应于该点的第i个坐标. 此可视化与时间序列可视化密切相关,除了它应用于轴与时间点不对应的数据,因此没有自然顺序.因此,不同的轴布置可能是有意义的. 一.平行坐标图 平行坐标图(parallel coordinates plot)是对于具有多个属性问题的一种可视化方法,下图为平行坐标图的基本样式,数

Python 数据可视化工具以及数据分析开发架构

Python 数据可视化进阶 Python数据可视化教程:基于 plotly 动态可视化绘图 ?https://edu.51cto.com/sd/4bff8 ? Python数据可视化教程 Seaborn ?https://edu.51cto.com/sd/19627 Python 数据分析实战 视频课程https://edu.51cto.com/sd/63225 Python数据可视化: pyecharts实战 ????? pyecharts 是一个用于生成 Echarts 图表的类库.Ech

Python数据可视化编程实战——导入数据

1.从csv文件导入数据 原理:with语句打开文件并绑定到对象f.不必担心在操作完资源后去关闭数据文件,with的上下文管理器会帮助处理.然后,csv.reader()方法返回reader对象,通过该对象遍历所读取文件的所有行. 1 #!/usr/bin/env python 2 3 import csv 4 5 filename = 'ch02-data.csv' 6 7 data = [] 8 try: 9 with open(filename) as f: 10 reader = csv

【数据科学】Python数据可视化概述

注:很早之前就打算专门写一篇与Python数据可视化相关的博客,对一些基本概念和常用技巧做一个小结.今天终于有时间来完成这个计划了! 0. Python中常用的可视化工具 Python在数据科学中的地位,不仅仅是因为numpy, scipy, pandas, scikit-learn这些高效易用.接口统一的科学计算包,其强大的数据可视化工具也是重要组成部分.在Python中,使用的最多的数据可视化工具是matplotlib,除此之外还有很多其他可选的可视化工具包,主要包括以下几大类: matpl

分享《Python数据可视化编程实战》中文版PDF+英文版PDF+源代码

下载:https://pan.baidu.com/s/17-gPTIYJsHc4Xn_f5sVYXw <Python数据可视化编程实战>中文版PDF+英文版PDF+源代码 中文版PDF,带目录和书签:英文版PDF,带目录和书签:中英文两版可以对比学习.配套源代码:经典书籍,讲解详细:中文版如图: 原文地址:http://blog.51cto.com/3215120/2311995

《Python数据可视化编程实战》中文版PDF+英文版PDF+源代码

资源链接:https://pan.baidu.com/s/1XqN3YBmL5Y1jknUbaiv-Qg<Python数据可视化编程实战>中文版PDF+英文版PDF+源代码中文版PDF,带目录和书签:英文版PDF,带目录和书签:中英文两版可以对比学习.配套源代码:经典书籍,讲解详细:中文版如图: 原文地址:http://blog.51cto.com/14063572/2318482

分享《Python数据可视化编程实战》+PDF+源码+Igor Milovanovic+颛清山

下载:https://pan.baidu.com/s/1R6n3aE2_jIGnOmFR7jKx0A 更多分享资料:http://blog.51cto.com/14087171 <Python数据可视化编程实战>中文版PDF+英文版PDF+源代码 中文版PDF,带目录和书签:英文版PDF,带目录和书签:中英文两版可以对比学习.配套源代码:经典书籍,讲解详细:中文版如图: 原文地址:http://blog.51cto.com/14087171/2321650

Python数据可视化的四种简易方法

摘要: 本文讲述了热图.二维密度图.蜘蛛图.树形图这四种Python数据可视化方法. 数据可视化是任何数据科学或机器学习项目的一个重要组成部分.人们常常会从探索数据分析(EDA)开始,来深入了解数据,并且创建可视化确实有助于让问题更清晰和更容易理解,尤其是对于那些较大的高维度数据集.在项目结束的时候,能够以清晰的.简洁的和令人信服的方式呈现最终结果,这是非常重要的,让你的用户能够理解和明白. 你可能已经看过了我之前的文章<5种快速和简单的Python数据可视化方法(含代码)>(5 Quick

python -- 数据可视化(二)

python -- 数据可视化 Matplotlib 绘图 1.图形对象(图形窗口) mp.figure(窗口名称, figsize=窗口大小, dpi=分辨率, facecolor=颜色) 如果"窗口名称"是第一次出现,那么就创建一个新窗口,其标题栏显示该名称,如果"窗口名称"已经出现过,那么不再创建新窗口,而只是将与该名称相对应的窗口设置为当前窗口.所谓当前窗口,就是接受后续绘图操作的窗口. mp.title(标题文本, fontsize=字体大小) mp.xl