SDWebImage实现原理详解

1)当需要获取网络图片的时候,我们首先需要的便是URL,如果没有URL什么都没有,获得URL后,SDWebImage实现的并不是直接去请求网路,而是检查图片缓存中有没有和URL相关的图片,如果有则直接返回image,如果没有则进行下一步。

2)当图片缓存中没有图片时,SDWebImage依旧不会直从网络上获取,而是检查沙盒中是否存在图片,如果存在,则把沙盒中对应的图片存进image缓存中,然后按着第一步的判断进行。

3)如果沙盒中也不存在,则显示占位图,然后根据图片的下载队列缓存判断是否正在下载,如果下载则等待,避免二次下载。如果不存则创建下载队列,下载完毕后将下载操作从队列中清除,并且将image存入图片缓存中。

4)刷新UI(当然根据实际情况操作)将image存入沙盒缓存。

时间: 2024-10-21 06:24:22

SDWebImage实现原理详解的相关文章

IOS SDWebImage实现原理详解

在之前我写过SDWebImage的使用方法,主要是用与获取网络图片,没有看过的朋友可以看看. 这篇文章将主要介绍SDWebImage的实现原理,主要针对于获取网络图片的原理,如果没有第三方我们该怎么去做,当然我知识用文字去介绍,我想花大把的时间去深入理解我们用不到的东西,是很不值得的,不过兴趣的朋友可以去其他博客上查找相应信息,毕竟学无止境.好了下面开始进入正题. 1)当我门需要获取网络图片的时候,我们首先需要的便是URl没有URl什么都没有,获得URL后我们SDWebImage实现的并不是直接

图像处理中的数学原理详解17——卷积定理及其证明

欢迎关注我的博客专栏"图像处理中的数学原理详解" 全文目录请见 图像处理中的数学原理详解(总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 图像处理中的数学原理详解(已发布的部分链接整理) http://blog.csdn.net/baimafujinji/article/details/48751037 1.4.5   卷积定理及其证明 卷积定理是傅立叶变换满足的一个重要性质.卷积定理指出,函数卷积的傅立叶变

Java虚拟机工作原理详解

原文地址:http://blog.csdn.net/bingduanlbd/article/details/8363734 一.类加载器 首先来看一下java程序的执行过程. 从这个框图很容易大体上了解java程序工作原理.首先,你写好java代码,保存到硬盘当中.然后你在命令行中输入 [java] view plaincopy javac YourClassName.java 此时,你的java代码就被编译成字节码(.class).如果你是在Eclipse IDE或者其他开发工具中,你保存代码

kickstart安装系统原理详解

前言 作为中小公司的运维,经常会遇到一些机械式的重复工作,例如:有时公司同时上线几十甚至上百台服务器,而且需要我们在短时间内完成系统安装. 常规的办法有什么? 光盘安装系统===>一个服务器DVD内置光驱百千块,百台服务器都配光驱就浪费了,因为一台服务器也就开始装系统能用的上,以后用的机会屈指可数.用USB外置光驱,插来插去也醉了. U盘安装系统===>还是同样的问题,要一台一台服务器插U盘. 网络安装系统(ftp,http,nfs) ===>这个方法不错,只要服务器能联网就可以装系统了

Storm概念、原理详解及其应用(一)BaseStorm

本文借鉴官文,添加了一些解释和看法,其中有些理解,写的比较粗糙,有问题的地方希望大家指出.写这篇文章,是想把一些官文和资料中基础.重点拿出来,能总结出便于大家理解的话语.与大多数"wordcount"代码不同的是,并不会有如何运行第一storm代码等内容,只有在运行完代码后,发现需要明白:"知其然,并知其所以然". Storm是什么?为什么要用Storm?为什么不用Spark? 第一个问题,以下概念足以解释: Storm是基于数据流的实时处理系统,提供了大吞吐量的实

SVM -支持向量机原理详解与实践之四

SVM -支持向量机原理详解与实践之四 SVM原理分析 SMO算法分析 SMO即Sequential minmal optimization, 是最快的二次规划的优化算法,特使对线性SVM和稀疏数据性能更优.在正式介绍SMO算法之前,首先要了解坐标上升法. 坐标上升法(Coordinate ascent) 坐标上升法(Coordinate Ascent)简单点说就是它每次通过更新函数中的一维,通过多次的迭代以达到优化函数的目的. 坐标上升法原理讲解 为了更加通用的表示算法的求解过程,我们将算法表

SVM-支持向量机原理详解与实践之一

目录(?)[+] 前言 SVM机器学习与深度学习 人工智能领域 机器学习与深度学习 SVM简介 SVM原理分析 快速理解SVM原理 线性可分和线性不可分 函数间隔和几何间隔 超平面分析与几何间隔详解 二次最优化 SVM-支持向量机原理详解与实践 前言 去年由于工作项目的需要实际运用到了SVM和ANN算法,也就是支持向量机和人工神经网络算法,主要是实现项目中的实时采集图片(工业高速摄像头采集)的图像识别的这一部分功能,虽然几经波折,但是还好最终还算顺利完成了项目的任务,忙碌一年,趁着放假有时间好好

JSPatch实现原理详解<二>

本文转载至 http://blog.cnbang.net/tech/2855/ 距离上次写的<JSPatch实现原理详解>有一个月的时间,在这段时间里 JSPatch 在不断地完善和改进,代码已经有很多变化,有一些修改值得写一下,作为上一篇的补充. Special Struct 先说下 _objc_msgForward,在上一篇提到为了让替换的方法走 forwardInvocation,把它指向一个不存在的 IMP: class_getMethodImplementation(cls, @se

Linux下FFMPEG--H264--编码&&解码的C实现与相关原理详解

FFMPEG是很强大的一套视频音频处理库,不过,强大的功能一般免不了复杂的实现,或者更加现实地说,"麻烦"的部署和使用流程 关于"FFMPEG怎么部署"这事就放在另一篇文章啦,下面入正题.. 编码encoder模块和解码decoder模块都有init初始化方法和资源free方法 init初始化方法主要是进行ffmpeg所必需的编解码器的初始化和部分功能方法的参数配置,而free资源释放方法则是相应地进行必要的回收 Encoder模块的实现和细节分析 #include