来源:http://www.xuebuyuan.com/2019161.html
颜色特征是在图像检索中应用最为广泛的视觉特征,主要原因在于颜色往往和图像中所包含的物体或场景十分相关。此外,与其他的视觉特征相比,颜色特征对图像本身的尺寸、方向、视角的依赖性较小,从而具有较高的鲁棒性。
颜色特征的特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。
颜色特征常用的特征提取与匹配方法
(1) 颜色直方图
颜色直方图是在许多图像检索系统中被广泛采用的颜色特征。它所描述的是不同色彩在整幅图像中所占的比例,而并不关心每种色彩所处的空间位置,即无法描述图像中的对象或物体。颜色直方图特别适于描述那些难以进行自动分割的图像。
当然,颜色直方图可以是基于不同的颜色空间和坐标系。最常用的颜色空间是RGB颜色空间,原因在于大部分的数字图像都是用这种颜色空间表达的。然而,RGB空间结构并不符合人们对颜色相似性的主观判断。因此,有人提出了基于HSV空间、Luv空间和Lab空间的颜色直方图,因为它们更接近于人们对颜色的主观认识。其中HSV空间是直方图最常用的颜色空间。它的三个分量分别代表色彩(Hue)、饱和度(Saturation)和值(Value)。
计算颜色直方图需要将颜色空间划分成若干个小的颜色区间,每个小区间成为直方图的一个bin。这个过程称为颜色量化(color quantization)。然后,通过计算颜色落在每个小区间内的像素数量可以得到颜色直方图。颜色量化有许多方法,例如向量量化、聚类方法或者神经网络方法。最为常用的做法是将颜色空间的各个分量(维度)均匀地进行划分。相比之下,聚类算法则会考虑到图像颜色特征在整个空间中的分布情况,从而避免出现某些bin中的像素数量非常稀疏的情况,使量化更为有效。另外,如果图像是RGB格式而直方图是HSV空间中的,我们可以预先建立从量化的RGB空间到量化的HSV空间之间的查找表(look-up
table),从而加快直方图的计算过程。
上述的颜色量化方法会产生一定的问题。设想两幅图像的颜色直方图几乎相同,只是互相错开了一个bin,这时如果我们采用L1距离或者欧拉距离计算两者的相似度,会得到很小的相似度值。为了克服这个缺陷,需要考虑到相似但不相同的颜色之间的相似度。一种方法是采用二次式距离。另一种方法是对颜色直方图事先进行平滑过滤,即每个bin中的像素对于相邻的几个bin也有贡献。这样,相似但不相同颜色之间的相似度对直方图的相似度也有所贡献。
选择合适的颜色小区间(即直方图的bin)数目和颜色量化方法与具体应用的性能和效率要求有关。一般来说,颜色小区间的数目越多,直方图对颜色的分辨能力就越强。然而,bin的数目很大的颜色直方图不但会增加计算负担,也不利于在大型图像库中建立索引。而且对于某些应用来说,使用非常精细的颜色空间划分方法不一定能够提高检索效果,特别是对于不能容忍对相关图像错漏的那些应用。另一种有效减少直方图bin的数目的办法是只选用那些数值最大(即像素数目最多)的bin来构造图像特征,因为这些表示主要颜色的bin能够表达图像中大部分像素的颜色。实验证明这种方法并不会降低颜色直方图的检索效果。事实上,由于忽略了那些数值较小的bin,颜色直方图对噪声的敏感程度降低了,有时会使检索效果更好
(2) 颜色集
颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从 RGB颜色空间转化成视觉均衡的颜色空间(如 HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系
(3) 颜色矩
颜色是彩色图像最重要的内容之一,被广泛用于图像检索中。但从图像中提取颜色特征时,很多算法都先要对图像进行量化处理。量化处理容易导致误检,并且产生的图像特征维数较高,不利于检索。
stricker和0reng0提出了颜色矩的方法[1],颜色矩是一种简单有效的颜色特征表示方法,有一阶矩(均值,mean)、二阶矩(方差,viarance)和三阶矩(斜度,skewness)等,由于颜色信息主要分布于低阶矩中,所以用一阶矩,二阶矩和三阶矩足以表达图像的颜色分布,颜色矩已证明可有效地表示图像中的颜色分布,因此,图像的颜色矩一共只需要9个分量(3个颜色分量,每个分量上3个低阶矩),与其他的颜色特征相比是非常简洁的。该方法的优点在于:不需要颜色空间量化,特征向量维数低;但实验发现该方法的检索效率比较低,因而在实际应用中往往用来过滤图像以缩小检索范围。
(4) 颜色聚合向量
针对颜色直方图和颜色矩无法表达图像色彩的空间位置的缺点,Pass提出了图像的颜色聚合向量(color
coherence vector)。它是颜色直方图的一种演变,其核心思想是将属于直方图每一个bin的像素进行分为两部分:如果该bin内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。假设αi与βi分别代表直方图的第i个bin中聚合像素和非聚合像素的数量,图像的颜色聚合向量可以表达为<(α1, β1),
(α2, β2), …, (αN, βN)>。而<α1 + β1, α2 + β2, …, αN +βN > 就是该图像的颜色直方图。由于包含了颜色分布的空间信息,颜色聚合向量相比颜色直方图可以达到更好的检索效果。
(5) 颜色相关图
颜色相关图(color correlogram)是图像颜色分布的另一种表达方式。这种特征不但刻画了某一种颜色的像素数量占整个图像的比例,还反映了不同颜色对之间的空间相关性。实验表明,颜色相关图比颜色直方图和颜色聚合向量具有更高的检索效率,特别是查询空间关系一致的图像。
如果考虑到任何颜色之间的相关性,颜色相关图会变得非常复杂和庞大(空间复杂度为O(N2d))。一种简化的变种是颜色自动相关图(color auto-correlogram),它仅仅考察具有相同颜色的像素间的空间关系,因此空间复杂度降到O(Nd)。
参考:http://blog.csdn.net/langyuewu/article/details/4144139
http://blog.csdn.net/ts_zxc/article/details/20059827