颜色特征提取

来源:http://www.xuebuyuan.com/2019161.html

颜色特征是在图像检索中应用最为广泛的视觉特征,主要原因在于颜色往往和图像中所包含的物体或场景十分相关。此外,与其他的视觉特征相比,颜色特征对图像本身的尺寸、方向、视角的依赖性较小,从而具有较高的鲁棒性。

颜色特征的特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。

颜色特征常用的特征提取与匹配方法

(1) 颜色直方图

颜色直方图是在许多图像检索系统中被广泛采用的颜色特征。它所描述的是不同色彩在整幅图像中所占的比例,而并不关心每种色彩所处的空间位置,即无法描述图像中的对象或物体。颜色直方图特别适于描述那些难以进行自动分割的图像。

当然,颜色直方图可以是基于不同的颜色空间和坐标系。最常用的颜色空间是RGB颜色空间,原因在于大部分的数字图像都是用这种颜色空间表达的。然而,RGB空间结构并不符合人们对颜色相似性的主观判断。因此,有人提出了基于HSV空间、Luv空间和Lab空间的颜色直方图,因为它们更接近于人们对颜色的主观认识。其中HSV空间是直方图最常用的颜色空间。它的三个分量分别代表色彩(Hue)、饱和度(Saturation)和值(Value)。

计算颜色直方图需要将颜色空间划分成若干个小的颜色区间,每个小区间成为直方图的一个bin。这个过程称为颜色量化(color quantization)。然后,通过计算颜色落在每个小区间内的像素数量可以得到颜色直方图。颜色量化有许多方法,例如向量量化、聚类方法或者神经网络方法。最为常用的做法是将颜色空间的各个分量(维度)均匀地进行划分。相比之下,聚类算法则会考虑到图像颜色特征在整个空间中的分布情况,从而避免出现某些bin中的像素数量非常稀疏的情况,使量化更为有效。另外,如果图像是RGB格式而直方图是HSV空间中的,我们可以预先建立从量化的RGB空间到量化的HSV空间之间的查找表(look-up
table),从而加快直方图的计算过程。

上述的颜色量化方法会产生一定的问题。设想两幅图像的颜色直方图几乎相同,只是互相错开了一个bin,这时如果我们采用L1距离或者欧拉距离计算两者的相似度,会得到很小的相似度值。为了克服这个缺陷,需要考虑到相似但不相同的颜色之间的相似度。一种方法是采用二次式距离。另一种方法是对颜色直方图事先进行平滑过滤,即每个bin中的像素对于相邻的几个bin也有贡献。这样,相似但不相同颜色之间的相似度对直方图的相似度也有所贡献。

选择合适的颜色小区间(即直方图的bin)数目和颜色量化方法与具体应用的性能和效率要求有关。一般来说,颜色小区间的数目越多,直方图对颜色的分辨能力就越强。然而,bin的数目很大的颜色直方图不但会增加计算负担,也不利于在大型图像库中建立索引。而且对于某些应用来说,使用非常精细的颜色空间划分方法不一定能够提高检索效果,特别是对于不能容忍对相关图像错漏的那些应用。另一种有效减少直方图bin的数目的办法是只选用那些数值最大(即像素数目最多)的bin来构造图像特征,因为这些表示主要颜色的bin能够表达图像中大部分像素的颜色。实验证明这种方法并不会降低颜色直方图的检索效果。事实上,由于忽略了那些数值较小的bin,颜色直方图对噪声的敏感程度降低了,有时会使检索效果更好

(2) 颜色集 
        颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从 RGB颜色空间转化成视觉均衡的颜色空间(如 HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系

(3) 颜色矩

颜色是彩色图像最重要的内容之一,被广泛用于图像检索中。但从图像中提取颜色特征时,很多算法都先要对图像进行量化处理。量化处理容易导致误检,并且产生的图像特征维数较高,不利于检索。

stricker和0reng0提出了颜色矩的方法[1],颜色矩是一种简单有效的颜色特征表示方法,有一阶矩(均值,mean)、二阶矩(方差,viarance)和三阶矩(斜度,skewness)等,由于颜色信息主要分布于低阶矩中,所以用一阶矩,二阶矩和三阶矩足以表达图像的颜色分布,颜色矩已证明可有效地表示图像中的颜色分布,因此,图像的颜色矩一共只需要9个分量(3个颜色分量,每个分量上3个低阶矩),与其他的颜色特征相比是非常简洁的。该方法的优点在于:不需要颜色空间量化,特征向量维数低;但实验发现该方法的检索效率比较低,因而在实际应用中往往用来过滤图像以缩小检索范围。

(4) 颜色聚合向量

针对颜色直方图和颜色矩无法表达图像色彩的空间位置的缺点,Pass提出了图像的颜色聚合向量(color
coherence vector)。它是颜色直方图的一种演变,其核心思想是将属于直方图每一个bin的像素进行分为两部分:如果该bin内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。假设αiβi分别代表直方图的第i个bin中聚合像素和非聚合像素的数量,图像的颜色聚合向量可以表达为<(α1β1),
(α2β2), …, (αNβN)>。而<α1 β1α2 β2, …, αN +βN > 就是该图像的颜色直方图。由于包含了颜色分布的空间信息,颜色聚合向量相比颜色直方图可以达到更好的检索效果。

(5) 颜色相关图

颜色相关图(color correlogram)是图像颜色分布的另一种表达方式。这种特征不但刻画了某一种颜色的像素数量占整个图像的比例,还反映了不同颜色对之间的空间相关性。实验表明,颜色相关图比颜色直方图和颜色聚合向量具有更高的检索效率,特别是查询空间关系一致的图像。

如果考虑到任何颜色之间的相关性,颜色相关图会变得非常复杂和庞大(空间复杂度为O(N2d))。一种简化的变种是颜色自动相关图(color auto-correlogram),它仅仅考察具有相同颜色的像素间的空间关系,因此空间复杂度降到O(Nd)

参考:http://blog.csdn.net/langyuewu/article/details/4144139

http://blog.csdn.net/ts_zxc/article/details/20059827

时间: 2024-10-29 10:47:49

颜色特征提取的相关文章

图像特征提取

特征提取是计算机视觉和图像处理中的一个概念.它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征.特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点.连续的曲线或者连续的区域. 特征的定义 至今为止特征没有万能和精确的定义.特征的精确定义往往由问题或者应用类型决定.特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点.因此一个算法是否成功往往由它使用和定义的特征决定.因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是

关于图像特征提取

特征提取是计算机视觉和图像处理中的一个概念.它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征.特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点.连续的曲线或者连续的区域. 特征的定义 至今为止特征没有万能和精确的定义.特征的精确定义往往由问题或者应用类型决定.特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起 点.因此一个算法是否成功往往由它使用和定义的特征决定.因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该

视频数据的预处理

视频数据的预处理 视频数据的预处理主要可分为视频镜头分割.关键帧提取.特征提取三个步骤. 1.视频镜头分割(镜头边界检测) 镜头分割是视频处理的第一步,是后续视频处理分析的基础.同一镜头内视频特征的变化主要由两个因素造成:对象/摄像机的运动和光线的变化.镜头之间的转换方式主要有两类,即突变(CutTransition)和渐变(Gradual Transition). (1)像素差异法 首先定义一个像素差异测度,然后计算连续两帧图像的帧间差异并用其与一个预先设定的阈值作比较,大于该阈值,则认为场景

基于HSV分块颜色直方图的图像检索算法

引 言 随着多媒体技术及[nternet技术的迅速发展,各行各业对图像的使用越来越广泛,图像信息资源的管理和检索显得越来越重要.传统的通过手工标记和索引图像(即基于文本的图像检索)的方法已经不能满足人们的需求,随之而来的问题是:随着图像数据的剧增和人们对图像的理解具有不同的侧重点,不同的人从不同的角度对同一幅图像的认识可能存在很大的差异性,因此无法准确反映图像信息.基于内容的图像检索方法(Content-Based Image Retrieval,CBIR)由此应运而生. 在基于内容的图像检索中

在线多实例学习online MIL

目标跟踪是计算机视觉领域里一个很重要的课题,而在线多实例学习方法是应用在视觉跟踪上的.关于这方面的讲解,网上能搜到的很少,于是自己看了若干文献,简单总结下,个人理解的不是很透彻,有不对的地方还望指正. Visual Tracking with Online MultipleInstance Learning: 通常一个跟踪系统会包含3个部分:image representation,appearance model, and motion model.MIL算法针对的是外观模型这一部分,当然也会

图像处理之基础---图像的特征简介

常用的图像特征有颜色特征.纹理特征.形状特征.空间关系特征. 一 颜色特征 (一)特点:颜色特征是一种全局特征,描 述了图像或图像区域所对应的景物的表面性质.一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献.由于颜色对图像或图像区 域的方向.大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征.另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也 检索出来.颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一

基于颜色的特征提取

内容及要求: 一.设计说明     基于内容的图像检索(content-based image retrieval, CBIR)技术由机器自动提取包含图像内容的可视化特征,如颜色.形状.纹理等,对数据库中的图像和查询样本图像在特征空间进行匹配,检索出与样本相似的图像.其原理框图如图1所示. 图1  基于内容的图像检索结构框架方框图 图像特征的提取是基于内容的图像检索技术的基础.图像视觉信息内容主要涉及两层含义:一层是图像信息的视觉特征,如颜色(灰度).纹理.形状与空间关系等,这是最低层的图像信息

BRISK特征提取算法

简介 BRISK算法是2011年ICCV上<BRISK:Binary Robust Invariant Scalable Keypoints>文章中,提出来的一种特征提取算法,也是一种二进制的特征描述算子. 它具有较好的旋转不变性.尺度不变性,较好的鲁棒性.在图像配准应用中,速度比较:SIFT>SURF>BRISK>FREAK>ORB,在对有较大模糊的图像配准时,BRISK算法在其中表现最为出色. BRISK算法 特征点检测 BRISK算法主要利用FAST9-16进行特

Atitti 图像处理 特征提取的科技树 attilax总结

理论 数学,信号处理,图像,计算机视觉 图像处理 滤波 图像处理 颜色转换 图像处理 压缩编码 图像处理 增强 图像处理 去模糊 图像处理 去燥 图像处理 抠图 图像处理 叠加混合 图像处理 滤镜 图像分析 质量评价 图像分析 图像检索 图像分析 金字塔分解 图像分析 边缘检测 canny 图像分析 边缘检测 sobel 图像分析 边缘检测 robert 机器视觉 特征提取 颜色特征 直方图 机器视觉 特征提取 颜色特征 色彩区块 机器视觉 特征提取 颜色特征 cca联通区域分析 机器视觉 特征