ACM算法

一、数论算法 1.求两数的最大公约数 2.求两数的最小公倍数 3.素数的求法 A.小范围内判断一个数是否为质数: B.判断longint范围内的数是否为素数(包含求50000以内的素数表):

二、图论算法

1.最小生成树

A.Prim算法: B.Kruskal算法:(贪心) 按权值递增顺序删去图中的边,若不形成回路则将此边加入最小生成树。

2.最短路径 A.标号法求解单源点最短路径: B.Floyed算法求解所有顶点对之间的最短路径: C. Dijkstra 算法:

3.计算图的传递闭包

4.无向图的连通分量 A.深度优先 B 宽度优先(种子染色法)

5.关键路径 几个定义: 顶点1为源点,n为汇点。 a. 顶点事件最早发生时间Ve[j], Ve [j] = max{ Ve [j] + w[I,j] },其中Ve (1) = 0; b. 顶点事件最晚发生时间 Vl[j], Vl [j] = min{ Vl[j] – w[I,j] },其中 Vl(n) = Ve(n); c. 边活动最早开始时间 Ee[I], 若边I由<j,k>表示,则Ee[I] = Ve[j]; d. 边活动最晚开始时间 El[I], 若边I由<j,k>表示,则El[I] = Vl[k] – w[j,k]; 若 Ee[j] = El[j] ,则活动j为关键活动,由关键活动组成的路径为关键路径。 求解方法: a. 从源点起topsort,判断是否有回路并计算Ve; b. 从汇点起topsort,求Vl; c. 算Ee 和 El;

6.拓扑排序 找入度为0的点,删去与其相连的所有边,不断重复这一过程。 例 寻找一数列,其中任意连续p项之和为正,任意q 项之和为负,若不存在则输出NO.

7.回路问题 Euler回路(DFS) 定义:经过图的每条边仅一次的回路。(充要条件:图连同且无奇点) Hamilton回路 定义:经过图的每个顶点仅一次的回路。 一笔画 充要条件:图连通且奇点个数为0个或2个。

9.判断图中是否有负权回路 Bellman-ford 算法 x[I],y[I],t[I]分别表示第I条边的起点,终点和权。共n个结点和m条边。

10.第n最短路径问题 *第二最短路径:每举最短路径上的每条边,每次删除一条,然后求新图的最短路径,取这些路径中最短的一条即为第二最短路径。 *同理,第n最短路径可在求解第n-1最短路径的基础上求解。

三、背包问题 *

部分背包问题可有贪心法求解:计算Pi/Wi 数据结构: w[i]:第i个背包的重量; p[i]:第i个背包的价值;

1.0-1背包:  每个背包只能使用一次或有限次(可转化为一次): A.求最多可放入的重量。 B.求可以放入的最大价值。 F[I,j]  为容量为I时取前j个背包所能获得的最大价值。 F [i,j] = max { f [ i – w [ j ], j-1] + p [ j ], f[  i,j-1]  } C.求恰好装满的情况数。

2.可重复背包 A求最多可放入的重量。 F[I,j]为前i个物品中选择若干个放入使其体积正好为j的标志,为布尔型。 状态转移方程为 f[I,j]  = f [ I-1, j – w[I]*k ] (k=1.. j div w[I]) B.求可以放入的最大价值。 f[i,j] = max { f  [i- k*w[j], j-1] + k*p[j] } (0<=k<= i div  w[j]) 其中f[i,j]表示容量为i时取前j种背包所能达到的最大值。 C.求恰好装满的情况数。 Ahoi2001  Problem2 求自然数n本质不同的质数和的表达式的数目。 思路一,生成每个质数的系数的排列,在一一测试,这是通法。 思路二,递归搜索效率较高

思路三:可使用动态规划求解 四、排序算法 1.快速排序: B.插入排序: 思路:当前a[1]..a[i-1]已排好序了,现要插入a[i]使a[1]..a[i]有序。 C.选择排序: D.  冒泡排序 E.堆排序: F.  归并排序 G.基数排序 思想:对每个元素按从低位到高位对每一位进行一次排序 五、高精度计算 高精度数的定义: 1.高精度加法 2.高精度减法 3.高精度乘以低精度 4.高精度乘以高精度 5.高精度除以低精度 6.高精度除以高精度

六、 树的遍历

1.已知前序中序求后序 2.已知中序后序求前序 3.已知前序后序求中序的一种

七  进制转换 1任意正整数进制间的互化 除n取余 2实数任意正整数进制间的互化 乘n取整 3负数进制: 设计一个程序,读入一个十进制数的基数和一个负进制数的基数,并将此十进制数转换为此负进制下的数:-R∈{-2,-3,-4,....-20} 八  全排列与组合的生成 1排列的生成:(1..n) 2组合的生成(1..n中选取k个数的所有方案)

九.查找算法 1折半查找 2树形查找 二叉排序树:每个结点的值都大于其左子树任一结点的值而小于其右子树任一结点的值。 查找

十、贪心 *会议问题 (1)  n个活动每个活动有一个开始时间和一个结束时间,任一时刻仅一项活动进行,求满足活动数最多的情况。 解:按每项活动的结束时间进行排序,排在前面的优先满足。 (2)会议室空闲时间最少。 (3)每个客户有一个愿付的租金,求最大利润。 (4)共R间会议室,第i个客户需使用i间会议室,费用相同,求最大利润。 十一、回溯法框架 1.  n皇后问题 2.Hanoi Tower h(n)=2*h(n-1)+1 h(1)=1

十二、DFS框架

十三、BFS框架

十五、数据结构相关算法 1.链表的定位函数

2.单链表的插入操作 3.单链表的删除操作 4.双链表的插入操作(插入新结点q) 5.双链表的删除操作

时间: 2024-10-07 19:50:39

ACM算法的相关文章

ACM,算法

ACM,算法 描述 最近Topcoder的XD遇到了一个难题,倘若一个数的三次方的后三位是111,他把这样的数称为小光棍数.他已经知道了第一个小光棍数是471,471的三次方是104487111,现在他想知道第m(m<=10000000000)个小光棍数是多少? 输入 有多组测试数据.第一行一个整数n,表示有n组测试数据.接下来的每行有一个整数m. 输出 输出第m个小光棍数. 样例输入 1 1 样例输出 471 #include <iostream> #include <strin

如何出一道ACM算法题?

本文背景 本人算法能力一般,但是为省赛和区域赛网络赛出过几道题,总结了一些自己的经验,希望与大家分享.本文不涉及具体的算法题,都是一些理论性的想法和一些建议. 题源 如果你能在没有题源的情况下自己想出一道新的题目,想必也很难看到这篇文章了.题源是出题的第一步,相信到了需要出题的地步,正在看这篇博客的你一定有自己熟悉的刷题网站,而这个网站可以作为你的题源,因为熟悉.本人推荐两个题源网站: 英文题源网站 Codeforce 中文题源网站 51nod 拿到的题源一定要确保只能能够写出所有解法,可能题目

ACM算法总结及刷题参考

参考:http://bbs.byr.cn/#!article/ACM_ICPC/11777 OJ上的一些水题(可用来练手和增加自信)(poj3299,poj2159,poj2739,poj1083,poj2262,poj1503,poj3006,poj2255,poj3094) 初期: 一.基本算法: (1)枚举. (poj1753,poj2965)    (2)贪心(poj1328,poj2109,poj2586)    (3)递归和分治法.     (4)递推.     (5)构造法.(po

ACM 算法实现

实验一 统计数字问题 1.问题描述:一本书的页码从自然数1 开始顺序编码直到自然数n.书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0.例如,第6 页用数字6 表示,而不是06 或006 等.数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1, 2,…,9.2.题目分析:考虑由0,1,2,…,9组成的所有n位数.从n个0到n个9共有个n位数,在这些n位数中,0,1,2,…,9每个数字使用次数相同,设为. 满足如下递归式:由此可知,.据此,可从低位向高位进行

【ACM算法纲要】【转自ALPC】

基本 C/C++.STL(vector.set.map.queue.string.algorithm) 枚举.贪心.递归.分治.递推.模拟 构造.位运算.常数优化 数据结构 队列.堆.栈.链表 排序(插入.冒泡.快速.归并.堆.桶.基数) 二分查找.散列表.并查集.哈夫曼树 排序二叉树.左偏树.平衡树(Splay/Treap/SBT) 树状数组.线段树.归并树.划分树.主席树.树套树 树链剖分.动态树 1/2维RMQ.LCA(在线/离线).稀疏表.字典树 字符串 KMP.扩展KMP AC自动机

ACM算法集锦

kurXX最小生成树 #include <iostream> #include <math.h> #include <algorithm> using namespace std; #define M 501 #define LIM 20000000 struct edg{ int u,v; int w; }all_e[M*M/2]; bool operator < (const edg &a,const edg &b){ return a.w&l

ACM算法目录

数据结构 栈,队列,链表 •哈希表,哈希数组 •堆,优先队列 双端队列 可并堆 左偏堆 •二叉查找树 Treap 伸展树 •并查集 集合计数问题 二分图的识别 •平衡二叉树 •二叉排序树 •线段树 一维线段树 二维线段树 •树状数组 一维树状数组 N维树状数组 •字典树 •后缀数组,后缀树 •块状链表 •哈夫曼树 •桶,跳跃表 •Trie树(静态建树.动态建树) •AC自动机 •LCA和RMQ问题 •KMP算法 ******************************************

ACM算法练习-——ZJU1164-Software CRC

具体的题目描述点此链接                http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1164 这道题,说实话 ,我不懂-.- 我先把这个代码粘在这,具体的这个原因我再研究研究~ 1 #include<stdio.h> 2 #define Generator 34943 3 4 int main() 5 { 6 unsigned char c,flag; 7 int count;//一行中的字符数 8 /

acm算法总结zon列表

简单列了一点 1.1 基本数据结构 1. 数组 2. 链表,双向链表 3. 队列,单调队列,双端队列 4. 栈,单调栈 1.2 中级数据结构 1. 堆 2. 并查集与带权并查集 3. hash 表 自然溢出 双hash 1.3 高级数据结构 1. 树状数组 2. 线段树,线段树合并 3. 平衡树 Treap 随机平衡二叉树 Splay 伸展树 * Scapegoat Tree 替罪羊树 4. 块状数组,块状链表 5.* 树套树 线段树套线段树 线段树套平衡树 * 平衡树套线段树 6.可并堆 左偏