bzoj4027[HEOI2015]兔子与樱花

http://www.lydsy.com/JudgeOnline/problem.php?id=4027

贪心。

我们发现,如果点i被删,那么它使父亲增加的重量为c[i]+son[i]-1

我们记val[i]=c[i]+son[i]-1

我们把删去的点染成灰色,发现其实这样的:

每个红色部分中,若干个被删去的点(灰色)和一个未删去的点(白色)组成了一棵树,这棵树合法当且仅当每个红色部分中val值的和小于等于M-1,即∑val<=M-1

我们可以用拟阵来证明贪心:

S={点_1,点_2,...,点_n-1,点_n}

L={x|x是S子集,表示灰色点的合法的集合}

遗传性:如果B∈L,那么任意的A⊆B,A必定满足A∈L。

证明:

因为B∈L,所以B中∑val<=M-1,又因为A⊆B,所以A中∑val必满足∑val<=M-1,所以A∈L。

交换性:如果A∈L,B∈L,且|A|<|B|,那么存在一个元素x∈B-A,满足A∪{x}∈L。

证明:

因为|A|<|B|,所以B中必定有一个A中没有的灰点,并且任选都能满足∑val<=M-1,所以成立。

所以可以用贪心了。

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<fstream>
#include<algorithm>
#include<cstring>
#include<string>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<utility>
#include<set>
#include<bitset>
#include<vector>
#include<functional>
#include<deque>
#include<cctype>
#include<climits>
#include<complex>
//#include<bits/stdc++.h>适用于CF,UOJ,但不适用于poj

using namespace std;

typedef long long LL;
typedef double DB;
typedef pair<int,int> PII;
typedef complex<DB> CP;

#define mmst(a,v) memset(a,v,sizeof(a))
#define mmcy(a,b) memcpy(a,b,sizeof(a))
#define fill(a,l,r,v) fill(a+l,a+r+1,v)
#define re(i,a,b)  for(i=(a);i<=(b);i++)
#define red(i,a,b) for(i=(a);i>=(b);i--)
#define ire(i,x) for(typedef(x.begin()) i=x.begin();i!=x.end();i++)
#define fi first
#define se second
#define m_p(a,b) make_pair(a,b)
#define p_b(a) push_back(a)
#define SF scanf
#define PF printf
#define two(k) (1<<(k))

template<class T>inline T sqr(T x){return x*x;}
template<class T>inline void upmin(T &t,T tmp){if(t>tmp)t=tmp;}
template<class T>inline void upmax(T &t,T tmp){if(t<tmp)t=tmp;}

const DB EPS=1e-9;
inline int sgn(DB x){if(abs(x)<EPS)return 0;return(x>0)?1:-1;}
const DB Pi=acos(-1.0);

inline int gint()
  {
        int res=0;bool neg=0;char z;
        for(z=getchar();z!=EOF && z!=‘-‘ && !isdigit(z);z=getchar());
        if(z==EOF)return 0;
        if(z==‘-‘){neg=1;z=getchar();}
        for(;z!=EOF && isdigit(z);res=res*10+z-‘0‘,z=getchar());
        return (neg)?-res:res;
    }
inline LL gll()
  {
      LL res=0;bool neg=0;char z;
        for(z=getchar();z!=EOF && z!=‘-‘ && !isdigit(z);z=getchar());
        if(z==EOF)return 0;
        if(z==‘-‘){neg=1;z=getchar();}
        for(;z!=EOF && isdigit(z);res=res*10+z-‘0‘,z=getchar());
        return (neg)?-res:res;
    }

const int maxN=2000000;

int N,M;
int son[maxN+100],c[maxN+100];
vector<int> to[maxN+100];
int head,tail,que[maxN+100];
int val[maxN+100],ans;

struct cmp{inline bool operator () (int a,int b){return a>b;}};
priority_queue<int,vector<int>,cmp> Q;

int main()
  {
      freopen("bzoj4027.in","r",stdin);
      freopen("bzoj4027.out","w",stdout);
      int i,j;
      N=gint();M=gint();
      re(i,1,N)c[i]=gint();
      re(i,1,N)
        {
            son[i]=gint();
            re(j,0,son[i]-1){int v=gint()+1;to[i].push_back(v);}
        }
      re(i,1,N)val[i]=c[i]+son[i]-1;
      que[head=tail=1]=1;
      while(head<=tail)
        {
            int u=que[head++];
            re(i,0,son[u]-1)que[++tail]=to[u][i];
        }
      red(i,tail,1)
        {
            int u=que[i];
            while(!Q.empty())Q.pop();
            re(j,0,son[u]-1)Q.push(val[to[u][j]]);
            while(!Q.empty() && val[u]+Q.top()<=M-1)val[u]+=Q.top(),ans++,Q.pop();
        }
      cout<<ans<<endl;
      return 0;
  }

时间: 2024-12-09 08:29:48

bzoj4027[HEOI2015]兔子与樱花的相关文章

dfs+贪心 BZOJ4027 [HEOI2015] 兔子与樱花

4027: [HEOI2015]兔子与樱花 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1159  Solved: 664[Submit][Status][Discuss] Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它看成一个有根树结构,其中0号节点是根节点.这个树的每个节点上

[bzoj4027][HEOI2015]兔子与樱花_贪心_树形dp

兔子与樱花 bzoj-4027 HEOI-2015 题目大意:每个点有c[i]朵樱花,有一个称重m, son[i]+c[i]<=m.如果删除一个节点,这个节点的樱花或移动到它的祖先中深度最大的,且没有被删除的节点,求在满足所有点界限的情况下,最多能删除的节点数. 注释:$1\le n\le 2\cdot 10^6$,$1\le m\le 10^5$,$0\le c_i\le 1000$. 想法:开始的时候很容易想到贪心,但是这东西对不对还两说 其实仔细一想这玩意儿tm显然啊??! 我们令c[i]

[bzoj4027][HEOI2015][兔子与樱花] (树形dp思想+玄学贪心)

Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它看成一个有根树结构,其中0号节点是根节点.这个树的每个节点上都会有一些樱花,其中第i个节点有c_i朵樱花.樱花树的每一个节点都有最大的载重m,对于每一个节点i,它的儿子节点的个数和i节点上樱花个数之和不能超过m,即son(i) + c_i <= m,其中son(i)表示i的儿子的个数,

bzoj4027: [HEOI2015]兔子与樱花 贪心

本人总觉得贪心不清真不是正解,可有的骚题他就是正解而且我还老碰上,所以说,有的时候是要感性理解一下或者证一下,贪心大佬..... 这个题看数据,dp太难,往贪心那边想一下吧..... 本题的做法是建树,从叶结点开始合并代价直到不行为止(证明:首先假设我们已经找到一个最优解但他不是从叶到根合并到死,那么对于合并的点我们可以把其中的点从低到高依次再合并他的子节点,第一层由于合并了子节点而他又是最优解所以最多合并一个子节点并把它自己释放,第二层同理....最高层因为是最优解肯定不能再合并子节点:队友不

&lt;bzoj4027: [HEOI2015]兔子与樱花&gt; (树形DP)

题意:一颗有根有向树 每个点有权值 定义每个节点的权值加上与他直接相连的儿子的个数不能超过m个 可以删除一个点 使得这个点的权值赋给他父亲 把他的儿子也都连在他的父亲上 问在满足定义的情况下最多能删除多少点 题解:其实就有点递归+贪心的思想 每个点的总价值为点权+儿子数 对于每个点如果他有儿子和孙子 且删了他的孙子后 他的儿子不能删了的话 显然是删除他的孙子比较优 虽然对答案的贡献都是1 但是这个点的权值会小 因为没有删他儿子所传递过来的点权 所以可以贪心的从叶子节点如果能删就删 同样 对于同一

【BZOJ4027】[HEOI2015]兔子与樱花 贪心

[BZOJ4027][HEOI2015]兔子与樱花 Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它看成一个有根树结构,其中0号节点是根节点.这个树的每个节点上都会有一些樱花,其中第i个节点有c_i朵樱花.樱花树的每一个节点都有最大的载重m,对于每一个节点i,它的儿子节点的个数和i节点上樱花个数之和不能超过m,即son(i) + c

【bzoj4027】 [HEOI2015]兔子与樱花

自底向上贪心. 每次给儿子排序,贪心地从小到大删,直到不能删. #include<algorithm> #include<iostream> #include<cstdlib> #include<cstring> #include<cstdio> #include<cmath> #include<queue> using namespace std; #define N 2000010 int n,m; struct ed

HEOI2015 兔子与樱花

Time Limit: 10 Sec Memory Limit: 256 MB Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由\(n\)个树枝分叉点组成,编号从\(0\)到\(n-1\),这\(n\)个分叉点由\(n-1\)个树枝连接,我们可以把它看成一个有根树结构,其中\(0\)号节点是根节点.这个树的每个节点上都会有一些樱花,其中第\(i\)个节点有\(c_i\)朵樱花.樱花树的每一个节点都有最大的载重\(

B20J_4027_[HEOI2015]兔子与樱花_树形DP

题意: 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它看成一个有根树结构,其中0号节点是根节点.这个树的每个节点上都会有一些樱花,其中第i个节点有c_i朵樱花.樱花树的每一个节点都有最大的载重m,对于每一个节点i,它的儿子节点的个数和i节点上樱花个数之和不能超过m,即son(i) + c_i <= m,其中son(i)表示i的儿子的个数,如果i为叶子节点