Review of Segmentation for Medical image analysis

成像方法:X射线,CT,MRI,SPECT,PET等

分割的定义: Image segmentation is a procedure for extracting the region of interest (ROI) through

an automatic or semi-automatic process【1】.

应用: border detection in angiograms of coronary冠状动脉血管造影, surgical planning, simulation of surgeries, tumor detection and segmentation肿瘤检测与分割, brain development study, functional mapping, blood cells automated classification, mass detection in mammograms, image registration, heart segmentation and analysis of cardiac images。

分割方法(4类):

1)region-based methods, Here we explain two most popular regionbased approaches: thresholding and region growing。

1,1)阈值法

缺点:没有考虑图像的空间信息,导致噪声敏感
局部阈值法(基于局部的均值方差信息)和Otsu阈值化(找最优全局阈值,极小化类内方差)

1.2)区域生长法,一种交互分割方法,会产生hole或不连通区域

2)clustering methods,

2.1)K-means

2.2)Fuzzy c-means

2.3)EM算法

3)classifier methods(模式识别), k近邻(KNN,非参数)和极大似然(参数),缺点没有利用空间信息,训练数据需要人工分割。

4)hybrid methods.

4.1)Gruph cut

4.2)

结果评价:

Dice Similarity Index(DSI)度量自动与人工分割的重叠程度。

实验数据:

参考文献:

【1】Norouzi, A., Rahim, M.S.M., Altameem, A., Saba, T., Rad, A.E., Rehman, A., Uddin, M., 2014. Medical Image Segmentation Methods, Algorithms, and Applications. IETE Technical Review 31, 199-213.

时间: 2024-11-25 12:32:58

Review of Segmentation for Medical image analysis的相关文章

Medical Image Processing Conference and Journal 医学图像处理会议与期刊

会议: Information Processing in Medical Imaging,IPMI IPMI2013 International Conference on Medical Image Computing and Computer Assisted Intervention,MICCAI MICCAI2014 International Symposium on Biomedical Imaging, ISBI 期刊: Medical Image Analysis, MIA I

图像处理与机器视觉行业分析

图像处理与机器视觉 一 行业分析 数字图像处理是对图像进行分析.加工.和处理,使其满足视觉.心理以及其他要求的技术.图像处理是信号处理在图像域上的一个应用.目前大多数的图像是以数字形式 存储,因而图像处理很多情况下指数字图像处理.此外,基于光学理论的处理方法依然占有重要的地位. 数字图像处理是信号处理的子类, 另外与计算机科学.人工智能等领域也有密切的关系. 传统的一维信号处理的方法和概念很多仍然可以直接应用在图像处理上,比如降噪.量化等.然而,图像属于二维信号,和一维信号相比,它有自己特殊的一

机器视觉会议以及牛人

机器视觉会议以及牛人 机器学习顶级会议:NIPS, ICML, UAI, AISTATS;  (期刊:JMLR, ML, Trends in ML, IEEE T-NN) 计算机视觉和图像识别:ICCV, CVPR, ECCV;  (期刊:IEEE T-PAMI, IJCV, IEEE T-IP) 人工智能:IJCAI, AAAI; (期刊AI) 另外相关的还有SIGRAPH, KDD, ACL, SIGIR, WWW等. 特别是,如果做机器学习,必须地,把近4年的NIPS, ICML翻几遍:如

图像处理和计算机视觉中的经典论文

图像处理和计算机视觉中的经典论文 转自:http://www.cnblogs.com/moondark/archive/2012/04/20/2459594.html 感谢水木上同领域的同学分享,有了他的整理,让我很方便的获得了CV方面相关的经典论文,我也顺便整理一下,把pdf中的文字贴到网页上,方便其它人更直观的获取所要内容~~~   资料的下载链接为:http://iask.sina.com.cn/u/2252291285/ish?folderid=775855 以下为该同学的整理的综述:“

[C6] Andrew Ng - Convolutional Neural Networks

About this Course This course will teach you how to build convolutional neural networks and apply it to image data. Thanks to deep learning, computer vision is working far better than just two years ago, and this is enabling numerous exciting applica

【转载】发个有用的:国际学术期刊会议大排名

Rank Conference Full Name1 OSDI Operating Systems Design and Implementation2 SOSP Symposium on Operating Systems Principles3 SIGCOMM Special Interest Group on Data Communication4 MOBICOM Mobile Computing and Networking5 SIGGRAPH Annual Conference on

Awesome Random Forest

Awesome Random Forest Random Forest - a curated list of resources regarding tree-based methods and more, including but not limited to random forest, bagging and boosting. Contributing Please feel free to pull requests, email Jung Kwon Lee ([email pro

matlab toolboxes 大全

MATLAB Toolboxes top (Top) Audio - Astronomy - BiomedicalInformatics - Chemometrics  - Chaos - Chemistry - Coding - Control - Communications - Engineering - Data Mining - Excel - FEM - Fuzzy - Finance - GAs - Graph - Graphics - Images - ICA - Kernel 

[Z] 计算机类会议期刊根据引用数排名

一位cornell的教授做的计算机类期刊会议依据Microsoft Research引用数的排名 link:http://www.cs.cornell.edu/andru/csconf.html The following are the journals and conferences in computer science that have published at least 100 papers (2003–2013), with at least 5 citations per pa