C# 高精度求幂 poj1001

高精度求幂

public static char[] exponentiation(string a,int r)
        {
            char[] aa = new char[1];
            string b = "";
            string c = a;
            for (int i = 0; i < r-1; i++)
            {
                aa = acm.Quadrature(c, a);
                b = "";
                foreach (var item in aa)
                {
                    b += item;
                }
                c = b;
            }
            return aa;
        }
时间: 2024-11-08 15:18:04

C# 高精度求幂 poj1001的相关文章

一份对于求幂方法的总结

关于乘方 1.最基本的求幂方法(同于数据极弱的题): int temp=con; for(int i=2;i<=a;i++) temp*=con: 可以低效求出con的a次方. 例题:输入二个正整数a,b,求a^b的值. #include<iostream> using namespace std; int main() { int a,b; scanf("%d%d",&a,&b); int temp=a; for(int i=2;i<=b;i+

随手练——麦森数(高精度快速幂)

https://www.luogu.org/problemnew/show/P1045 第一步:求位数 第二步:高精度快速幂的实现 第一版: 用vector做的,中间把超过500位的去除,但是实际跑起来比较慢 #include <iostream> #include <stdio.h> #include <math.h> #include <vector> #include <algorithm> using namespace std; int

求幂运算、多项式乘法及Horner法则的应用

一,两种不同的求幂运算 求解x^n(x 的 n 次方) ①使用递归,代码如下: 1 private static long pow(int x, int n){ 2 if(n == 0) 3 return 1; 4 if(n == 1) 5 return x; 6 if(n % 2 == 0) 7 return pow(x * x, n / 2); 8 else 9 return pow(x * x, n / 2) * x; 10 } 分析: 每次递归,使得问题的规模减半.2到6行操作的复杂度为

二分求幂,快速求解a的b次幂

一个引子 如何求得a的b次幂呢,那还不简单,一个for循环就可以实现! void main(void) { int a, b; int ans = 1; cin >> a >> b; for (int i = 1; i <= b; i++) { ans *= a; } cout << ans; } 那么如何快速的求得a的b次幂呢?上面的代码还可以优化吗? 当然是ok的!下面就介绍一种方法-二分求幂. 二分求幂 所谓二分求幂,即是将b次幂用二进制表示,当二进制位k位

A sequence of numbers(快速求幂)

题目描述 Xinlv wrote some sequences on the paper a long time ago, they might be arithmetic or geometric sequences. The numbers are not very clear now, and only the first three numbers of each sequence are recognizable. Xinlv wants to know some numbers in

NYOJ--102--次方求模(快速求幂取模)

次方求模 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 求a的b次方对c取余的值 输入 第一行输入一个整数n表示测试数据的组数(n<100)每组测试只有一行,其中有三个正整数a,b,c(1=<a,b,c<=1000000000) 输出 输出a的b次方对c取余之后的结果 样例输入 3 2 3 5 3 100 10 11 12345 12345 样例输出 3 1 10481 1 /* 2 Name: NYOJ--102--次方求模 3 Copyright: ?

快速求幂

快速幂在算指数时是很高效的,他的基本原理是二进制. 如果要算 2^5,可以直接2*2*2*2*2 但是如果要算 3^999,指数N太大,计算太慢,所以有一种快速的解法. @@@@@@@@@@@@@@@@@@@@@@@@ 以3^21为例. 2^21=(2^16)×(2^4)×(2^1) 21的二进制可以写成(10101)----------------而10101可以写成1*2^4+0*2^3+1*2^2+0*2^1+1*2^0 可以明显看出, 每一个香对应着上边的指数.   2^4=16 2^2

快速求幂运算笔记

如何快速求x得n次方呢? 首先C++里面有个pow如何实现呢?自己查查,里面使用double,肯定更麻烦,还有jianzhi 我们会顺手写下 int res=1; for(int i=1;i<=n;i++) { res*=x; } 学习一下快速幂,logn内计算出来,使用N的二进制,只需要logN就可以计算. 正要的就是计算每个为1对应的基数.列入: 11是多少?是二进制的话,就是1*2^1+1 那么x^(11)呢,两个1对应的基数是多少呢?低位1对应的是X,高位1对应的是X^2,因此,就是位于

二分求幂(快速求幂,二进制求幂)

二分求幂, 非递归求法(二进制求法): 比如 2^5就是5个2相乘,按照5的二进制求 3^10就是8个3相乘,再2个3相乘. 处理幂的二进制,具体实现代码如下: long long quickmulti(long long a,long long b) { long long res=1; while(b) { if(b&1) //如果最后一位为1,则res*=a; res*=a; a*=a; //a*=a b>>=1; //b%=2 } return res; }