python pandas Data.Frame -- iloc和loc以及icol

渐渐从R转向python数据处理

Doc 文档路径

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html

iloc和loc以及icol

http://blog.csdn.net/chenkfkevin/article/details/62049060

时间: 2024-11-04 11:55:10

python pandas Data.Frame -- iloc和loc以及icol的相关文章

python Pandas 读取数据,写入文件

pandas 选取数据 iloc和 loc的用法不太一样,iloc是根据索引, loc是根据行的数值 >>> import pandas as pd >>> import os >>> os.chdir("D:\\") >>> d = pd.read_csv("GWAS_water.qassoc", delimiter= "\s+") >>> d.loc[1

Python Pandas DataFrame:查询数据or选择数据(selection)之loc,iloc,at,iat,ix的用法和区别

在操作DataFrame时,肯定会经常用到loc,iloc,at等函数,各个函数看起来差不多,但是还是有很多区别的,我们一起来看下吧. 首先,还是列出一个我们用的DataFrame,注意index一列,如下: 接下来,介绍下各个函数的用法: 1.loc函数 愿意看官方文档的,请戳这里,这里一般最权威. loc函数是基于"标签"选择数据的,但是也可以接受一个boolean的array,对于每个用法,我们一一举例: 1.1 单个label 接受一个"标签"(label)

Python pandas 0.19.1 Indexing and Selecting Data文档翻译

最近在写个性化推荐的论文,经常用到Python来处理数据,被pandas和numpy中的数据选取和索引问题绕的比较迷糊,索性把这篇官方文档翻译出来,方便自查和学习,翻译过程中难免很多不到位的地方,但大致能看懂,错误之处欢迎指正~ Python pandas 0.19.1 Indexing and Selecting Data 原文链接 http://pandas.pydata.org/pandas-docs/stable/indexing.html 数据索引和选取 pandas对象中的轴标签信息

R vs Python:构建data.frame、读取csv与统计描述

一.Python 数据框就是典型的关系型数据库的数据存储形式,每一行是一条记录,每一列是一个属性,最终构成表格的形式,这是数据科学家必须熟悉的最典型的数据结构. 1.构建数据框 import pandas as pd data = {'year':[2010, 2011, 2012, 2010, 2011, 2012, 2010, 2011, 2012], 'team':['FCBarcelona', 'FCBarcelona', 'FCBarcelona', 'RMadrid', 'RMadr

Python For Data Analysis -- Pandas

首先pandas的作者就是这本书的作者 对于Numpy,我们处理的对象是矩阵 pandas是基于numpy进行封装的,pandas的处理对象是二维表(tabular, spreadsheet-like),和矩阵的区别就是,二维表是有元数据的 用这些元数据作为index更方便,而Numpy只有整形的index,但本质是一样的,所以大部分操作是共通的 大家碰到最多的二维表应用,关系型数据库中的表,有列名和行号,这些就是元数据 当然你可以用抽象的矩阵来对这些二维表做统计,但使用pandas会更方便  

Python pandas 获取Excel重复记录

pip install pandas pip install xlrd 大量记录的时候,用EXCEL排序处理比较费劲,EXCEL程序动不动就无响应了,用pands完美解决. # We will use data structures and data analysis tools provided in Pandas library import pandas as pd # Import retail sales data from an Excel Workbook into a data

Python Pandas Merge, join and concatenate

Pandas提供了基于 series, DataFrame 和panel对象集合的连接/合并操作. Concatenating objects 先来看例子: from pandas import Series, DataFrame import pandas as pd import numpy as np df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3'], 'C': ['C0', '

Python pandas

from pandas import Series,DataFrameimport pandas as pd'''index obj2= Series([4,7,-5,3],index=['d','b','a','c'])obj2.valuesobj2.index obj2['a']obj2['c'] obj2['d'] = 6obj2[['c','d','a']] obj2obj2[obj2>0]obj2*2import numpy as npnp.exp(obj2) ''' dict'b'

《Python For Data Analysis》学习笔记-1

在引言章节里,介绍了MovieLens 1M数据集的处理示例.书中介绍该数据集来自GroupLens Research(http://www.groupLens.org/node/73),该地址会直接跳转到https://grouplens.org/datasets/movielens/,这里面提供了来自MovieLens网站的各种评估数据集,可以下载相应的压缩包,我们需要的MovieLens 1M数据集也在里面. 下载解压后的文件夹如下: 这三个dat表都会在示例中用到,但是我所阅读的<Pyt