Sorting It All Out
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 29182 | Accepted: 10109 |
Description
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will
give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
Input
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of
the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character
"<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
Output
For each problem instance, output consists of one line. This line should be one of the following three:
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sample Input
4 6 A<B A<C B<C C<D B<D A<B 3 2 A<B B<A 26 1 A<Z 0 0
Sample Output
Sorted sequence determined after 4 relations: ABCD. Inconsistency found after 2 relations. Sorted sequence cannot be determined.
Source
East Central North America 2001
#include<stdio.h> const int N = 30; int mapt[N][N],in[N],n,m; int tope(int tm) { int path[N],k=0,l=0,uncertain=0; for(int i=0;i<n;i++) if(in[i]==0) path[k++]=i,in[i]=-1; while(l<k) { int s=path[l++]; if(k-l!=0) uncertain=1; for(int j=0;j<n;j++) if(in[j]>0&&mapt[s][j]) { in[j]--; if(in[j]==0) path[k++]=j,in[j]=-1; } } int flag=0; if(k!=n)//说明有环,矛盾 printf("Inconsistency found after %d relations.\n",tm),flag=1; else if(uncertain==0) { printf("Sorted sequence determined after %d relations: ",tm); for(int i=0;i<k;i++) printf("%c",path[i]+'A'); printf(".\n"); flag=1; } else if(tm==m)//最后一次加入一个关系判断,可能的输出 printf("Sorted sequence cannot be determined.\n"),flag=1; return flag; } int main() { int in_t[N]; char st[10]; while(scanf("%d%d",&n,&m)>0&&n+m!=0) { for(int i=0;i<n;i++) { in_t[i]=0; for(int j=0;j<n;j++) mapt[i][j]=0; } int flag=0; for(int i=1;i<=m;i++) { scanf("%s",st); if(flag) continue; int a=st[0]-'A'; int b=st[2]-'A'; if(mapt[a][b]==0) { mapt[a][b]=1; in_t[b]++; for(int j=0;j<n;j++) in[j]=in_t[j]; flag=tope(i); } } } }