莫比乌斯函数之和 51Nod - 1244 (杜教筛)

莫比乌斯函数之和

51Nod - 1244

题意:

时间: 2024-08-28 10:28:24

莫比乌斯函数之和 51Nod - 1244 (杜教筛)的相关文章

51NOD 1237 最大公约数之和 V3(杜教筛)

题意 求 $\sum_{i=1}^n \sum_{j=1}^n gcd(i,j)$. 分析 $$\begin{aligned}\sum_{i=1}^n \sum_{j=1}^n gcd(i,j)  &= \sum_{i=1}^n \sum_{j=1}^n d[gcd(i, j)=d] \\&= \sum_{d=1}^n d \sum_{i=1}^n \sum_{j=1}^n[gcd(i,j=d)] \\&= \sum_{d=1}^n d \sum_{i=1}^{\left \lfl

[51nod1238] 最小公倍数之和 V3(杜教筛)

题面 传送门 题解 懒了--这里写得挺好的-- //minamoto #include<bits/stdc++.h> #define R register #define ll long long #define IT map<ll,int>::iterator #define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i) #define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i) #define go(

【51nod-1239&amp;1244】欧拉函数之和&amp;莫比乌斯函数之和 杜教筛

题目链接: 1239:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 1244:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 杜教筛裸题,不过现在我也只会筛这俩前缀和... $$s(n)=\sum _{i=1}^{n}f(i)$$ 那么就有: $$\sum_{i=1}^{n}f(i)\lfloor \frac{n}{i} \

51nod1238 最小公倍数之和 V3 莫比乌斯函数 杜教筛

题意:求\(\sum_{i = 1}^{n}\sum_{j = 1}^{n}lcm(i, j)\). 题解:因为是用的莫比乌斯函数求的,所以推导比大部分题解多...而且我写式子一般都比较详细,所以可能看上去很多式子,实际上是因为每一步都写了,几乎没有跳过的.所以应该都可以看懂的. 末尾的\(e\)函数是指的\(e[1] = 1\),\(e[x] = 0(x != 1)\)这样一个函数 \[\sum_{i = 1}^{n}\sum_{j = 1}^{n}lcm(i, j)\] \[\sum_{i

【51Nod 1237】最大公约数之和 V3 莫比乌斯反演+杜教筛

题意 求$\sum_{i=1}^{n}\sum_{j=1}^{n}(i,j)$ 枚举约数 $$ \begin{align} ans &=\sum_{d=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[(i,j)=d] \ &=\sum_{d=1}^{n}\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}\sum_{j=1}^{\lfloor \frac{n}{d} \rfloor}[(i,j)=1] \ \end{align} $$ 利用

51nod 1220 约数之和(杜教筛 + 推推推推推公式)

题意 给出\(n(1\leq n \leq 10^9)\),求\(\sum_{i=1}^n\sum_{j=1}^n\sigma(ij)\),其中\(\sigma(n)\)表示\(n\)的约数之和. balabala 交了两道杜教筛的的板子题(51nod 1239, 1244)就看到了这题,然后不会搞,然后看题解看了一天一夜终于彻底搞明白一发A掉了...感觉学到了很多,写个博客整理一下,如有错请指出. 技能需求 数论函数与线性筛 莫比乌斯反演(也可以当成容斥去理解) 狄利克雷卷积 杜教筛 强大的数

数论入门——莫比乌斯函数,欧拉函数,狄利克雷卷积,线性筛,莫比乌斯反演,杜教筛

一个菜鸡对数论的一点点理解... 莫比乌斯函数 定义函数\(\mu(n)\)为: 当n有平方因子时,\(\mu(n)=0\). 当n没有平方因子时,\(\mu(n)=(-1)^{\omega(n)}\),\(\omega(n)\)表示n不同质因子的个数. 性质1: \(\sum_{d|n}\mu(d)=[n=1]\) 证明:我们把n分解质因数,则原式\(=(-1+1)^{\omega(n)}=0\). 因为对于不同的质因子,只有选和不选两种方案,这是一个组合数相加的形式,偶数加奇数减,根据二项式

莫比乌斯函数与杜教筛

前人的文章已经很详尽了,这里只作一点补充. 莫比乌斯反演与莫比乌斯函数入门资料:https://wenku.baidu.com/view/fbec9c63ba1aa8114431d9ac.html 讲的非常清楚,这里稍微补充一下: 1.虽然考试肯定不会考,但是对于定理的证明还是应该大概了解一下的.关于欧拉函数φ与莫比乌斯函数μ,由于它们都是积性函数,所以很多性质都可以用类似数学归纳法的方法证明.过程是:(1)对于一个性质证明在x为素数是成立 (2)对于素数p和一个正整数a,设此性质对a与p均成立

莫比乌斯反演欧拉函数杜教筛大总结

莫比乌斯函数 定义 设\(n=\prod_{i=1}^{k} p_i^{c_i}\),则\(\mu(n)=(-1)^k\),特别地\(\mu(1)=1\). 性质 最常用性质 \(\sum_{d|n}\mu(d)=[n=1]\) 反演性质 \(F(n)=\sum_{d|n}f(d) \Longleftrightarrow f(n)=\sum_{d|n}F(d)\mu(\frac{n}{d})\) \(F(n)=\sum_{n|d}f(d) \Longleftrightarrow f(n)=\su