Building your Deep Neural Network: Step by Step¶

Welcome to your week 4 assignment (part 1 of 2)! You have previously trained a 2-layer Neural Network (with a single hidden layer). This week, you will build a

deep neural network, with as many layers as you want!

  • In this notebook, you will implement all the functions required to build a deep neural network.
  • In the next assignment, you will use these functions to build a deep neural network for image classification.

After this assignment you will be able to:

  • Use non-linear units like ReLU to improve your model
  • Build a deeper neural network (with more than 1 hidden layer)
  • Implement an easy-to-use neural network class

Notation:

  • Superscript [l] denotes a quantity associated with the lth layer.

    • Example: a[L] is the Lth layer activation. W[L] and b[L] are the Lth layer parameters.
  • Superscript (i) denotes a quantity associated with the ith example.
    • Example: x(i) is the ith training example.
  • Lowerscript i denotes the ith entry of a vector.
    • Example: a[l]i denotes the ith entry of the lth layer‘s activations).

Let‘s get started!

1 - Packages

Let‘s first import all the packages that you will need during this assignment.

  • numpy is the main package for scientific computing with Python.
  • matplotlib is a library to plot graphs in Python.
  • dnn_utils provides some necessary functions for this notebook.
  • testCases provides some test cases to assess the correctness of your functions
  • np.random.seed(1) is used to keep all the random function calls consistent. It will help us grade your work. Please don‘t change the seed.

    import numpy as np
    import h5py
    import matplotlib.pyplot as plt
    from testCases_v3 import *
    from dnn_utils_v2 import sigmoid, sigmoid_backward, relu, relu_backward
    
    %matplotlib inline
    plt.rcParams[‘figure.figsize‘] = (5.0, 4.0) # set default size of plots
    plt.rcParams[‘image.interpolation‘] = ‘nearest‘
    plt.rcParams[‘image.cmap‘] = ‘gray‘
    
    %load_ext autoreload
    %autoreload 2
    
    np.random.seed(1)

    2 - Outline of the Assignment

    To build your neural network, you will be implementing several "helper functions". These helper functions will be used in the next assignment to build a two-layer neural network and an L-layer neural network. Each small helper function you will implement will have detailed instructions that will walk you through the necessary steps. Here is an outline of this assignment, you will:

    • Initialize the parameters for a two-layer network and for an LL-layer neural network.
    • Implement the forward propagation module (shown in purple in the figure below).
      • Complete the LINEAR part of a layer‘s forward propagation step (resulting in Z[l]).
      • We give you the ACTIVATION function (relu/sigmoid).
      • Combine the previous two steps into a new [LINEAR->ACTIVATION] forward function.
      • Stack the [LINEAR->RELU] forward function L-1 time (for layers 1 through L-1) and add a [LINEAR->SIGMOID] at the end (for the final layer LL). This gives you a new L_model_forward function.
    • Compute the loss.
    • Implement the backward propagation module (denoted in red in the figure below).
      • Complete the LINEAR part of a layer‘s backward propagation step.
      • We give you the gradient of the ACTIVATE function (relu_backward/sigmoid_backward)
      • Combine the previous two steps into a new [LINEAR->ACTIVATION] backward function.
      • Stack [LINEAR->RELU] backward L-1 times and add [LINEAR->SIGMOID] backward in a new L_model_backward function
    • Finally update the parameters

Figure 1

Note that for every forward function, there is a corresponding backward function. That is why at every step of your forward module you will be storing some values in a cache. The cached values are useful for computing gradients. In the backpropagation module you will then use the cache to calculate the gradients. This assignment will show you exactly how to carry out each of these steps.

3 - Initialization

You will write two helper functions that will initialize the parameters for your model. The first function will be used to initialize parameters for a two layer model. The second one will generalize this initialization process to LL layers.

3.1 - 2-layer Neural Network

Exercise: Create and initialize the parameters of the 2-layer neural network.

Instructions:

  • The model‘s structure is: LINEAR -> RELU -> LINEAR -> SIGMOID.
  • Use random initialization for the weight matrices. Use np.random.randn(shape)*0.01 with the correct shape.
  • Use zero initialization for the biases. Use np.zeros(shape).

    # GRADED FUNCTION: initialize_parameters
    
    def initialize_parameters(n_x, n_h, n_y):
        """
        Argument:
        n_x -- size of the input layer
        n_h -- size of the hidden layer
        n_y -- size of the output layer
    
        Returns:
        parameters -- python dictionary containing your parameters:
                        W1 -- weight matrix of shape (n_h, n_x)
                        b1 -- bias vector of shape (n_h, 1)
                        W2 -- weight matrix of shape (n_y, n_h)
                        b2 -- bias vector of shape (n_y, 1)
        """
    
        np.random.seed(1)
    
        ### START CODE HERE ### (≈ 4 lines of code)
        W1 = np.random.randn(n_h,n_x)*0.01
        b1 = np.zeros((n_h,1))
        W2 = np.random.randn(n_y,n_h)*0.01
        b2 = np.zeros((n_y,1))
        ### END CODE HERE ###
    
        assert(W1.shape == (n_h, n_x))
        assert(b1.shape == (n_h, 1))
        assert(W2.shape == (n_y, n_h))
        assert(b2.shape == (n_y, 1))
    
        parameters = {"W1": W1,
                      "b1": b1,
                      "W2": W2,
                      "b2": b2}
    
        return parameters    
    parameters = initialize_parameters(3,2,1)
    print("W1 = " + str(parameters["W1"]))
    print("b1 = " + str(parameters["b1"]))
    print("W2 = " + str(parameters["W2"]))
    print("b2 = " + str(parameters["b2"]))
    W1 = [[ 0.01624345 -0.00611756 -0.00528172]
     [-0.01072969  0.00865408 -0.02301539]]
    b1 = [[ 0.]
     [ 0.]]
    W2 = [[ 0.01744812 -0.00761207]]
    b2 = [[ 0.]]
  • Expected output:
    W1 [[ 0.01624345 -0.00611756 -0.00528172] [-0.01072969 0.00865408 -0.02301539]]
    b1 [[ 0.] [ 0.]]
    W2 [[ 0.01744812 -0.00761207]]
    b2 [[ 0.]]

3.2 - L-layer Neural Network

The initialization for a deeper L-layer neural network is more complicated because there are many more weight matrices and bias vectors. When completing the initialize_parameters_deep, you should make sure that your dimensions match between each layer. Recall that n[l]n[l] is the number of units in layer ll. Thus for example if the size of our input XX is (12288,209)(12288,209) (with m=209m=209 examples) then:

Exercise: Implement initialization for an L-layer Neural Network.

Instructions:

  • The model‘s structure is [LINEAR -> RELU] ×× (L-1) -> LINEAR -> SIGMOID. I.e., it has L?1L?1 layers using a ReLU activation function followed by an output layer with a sigmoid activation function.
  • Use random initialization for the weight matrices. Use np.random.rand(shape) * 0.01.
  • Use zeros initialization for the biases. Use np.zeros(shape).
  • We will store n[l]n[l], the number of units in different layers, in a variable layer_dims. For example, the layer_dims for the "Planar Data classification model" from last week would have been [2,4,1]: There were two inputs, one hidden layer with 4 hidden units, and an output layer with 1 output unit. Thus means W1‘s shape was (4,2), b1 was (4,1), W2 was (1,4) and b2 was (1,1). Now you will generalize this to LL layers!
  • Here is the implementation for L=1L=1 (one layer neural network). It should inspire you to implement the general case (L-layer neural network).
      if L == 1:
          parameters["W" + str(L)] = np.random.randn(layer_dims[1], layer_dims[0]) * 0.01
          parameters["b" + str(L)] = np.zeros((layer_dims[1], 1))
# GRADED FUNCTION: initialize_parameters_deep

def initialize_parameters_deep(layer_dims):
    """
    Arguments:
    layer_dims -- python array (list) containing the dimensions of each layer in our network

    Returns:
    parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
                    Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
                    bl -- bias vector of shape (layer_dims[l], 1)
    """

    np.random.seed(3)
    parameters = {}
    L = len(layer_dims)            # number of layers in the network

    for l in range(1, L): #my# range(1,3)  [1,2]   range(10) presents: range(0, 10) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
        ### START CODE HERE ### (≈ 2 lines of code)
        parameters[‘W‘ + str(l)] = np.random.randn(layer_dims[l],layer_dims[l-1]) * 0.01
        parameters[‘b‘ + str(l)] = np.zeros((layer_dims[l],1))
        ### END CODE HERE ###

        assert(parameters[‘W‘ + str(l)].shape == (layer_dims[l], layer_dims[l-1]))
        assert(parameters[‘b‘ + str(l)].shape == (layer_dims[l], 1))

    return parameters
parameters = initialize_parameters_deep([5,4,3])
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
W1 = [[ 0.01788628  0.0043651   0.00096497 -0.01863493 -0.00277388]
 [-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218]
 [-0.01313865  0.00884622  0.00881318  0.01709573  0.00050034]
 [-0.00404677 -0.0054536  -0.01546477  0.00982367 -0.01101068]]
b1 = [[ 0.]
 [ 0.]
 [ 0.]
 [ 0.]]
W2 = [[-0.01185047 -0.0020565   0.01486148  0.00236716]
 [-0.01023785 -0.00712993  0.00625245 -0.00160513]
 [-0.00768836 -0.00230031  0.00745056  0.01976111]]
b2 = [[ 0.]
 [ 0.]
 [ 0.]]

Expected output:

W1 [[ 0.01788628 0.0043651 0.00096497 -0.01863493 -0.00277388] [-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218] [-0.01313865 0.00884622 0.00881318 0.01709573 0.00050034] [-0.00404677 -0.0054536 -0.01546477 0.00982367 -0.01101068]]
b1 [[ 0.] [ 0.] [ 0.] [ 0.]]
W2 [[-0.01185047 -0.0020565 0.01486148 0.00236716] [-0.01023785 -0.00712993 0.00625245 -0.00160513] [-0.00768836 -0.00230031 0.00745056 0.01976111]]
b2 [[ 0.] [ 0.] [ 0.]]

4 - Forward propagation module

4.1 - Linear Forward

Now that you have initialized your parameters, you will do the forward propagation module. You will start by implementing some basic functions that you will use later when implementing the model. You will complete three functions in this order:

  • LINEAR
  • LINEAR -> ACTIVATION where ACTIVATION will be either ReLU or Sigmoid.
  • [LINEAR -> RELU] ×× (L-1) -> LINEAR -> SIGMOID (whole model)

The linear forward module (vectorized over all the examples) computes the following equations:

Z[l]=W[l]A[l?1]+b[l](4)(4)Z[l]=W[l]A[l?1]+b[l]

where A[0]=XA[0]=X.

Exercise: Build the linear part of forward propagation.

Reminder: The mathematical representation of this unit is Z[l]=W[l]A[l?1]+b[l]Z[l]=W[l]A[l?1]+b[l]. You may also find np.dot() useful. If your dimensions don‘t match, printing W.shape may help.

# GRADED FUNCTION: linear_forward

def linear_forward(A, W, b):
    """
    Implement the linear part of a layer‘s forward propagation.

    Arguments:
    A -- activations from previous layer (or input data): (size of previous layer, number of examples)
    W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
    b -- bias vector, numpy array of shape (size of the current layer, 1)

    Returns:
    Z -- the input of the activation function, also called pre-activation parameter
    cache -- a python dictionary containing "A", "W" and "b" ; stored for computing the backward pass efficiently
    """

    ### START CODE HERE ### (≈ 1 line of code)
    Z = np.dot(W,A) + b
    ### END CODE HERE ###

    assert(Z.shape == (W.shape[0], A.shape[1]))
    cache = (A, W, b)

    return Z, cache
A, W, b = linear_forward_test_case()

Z, linear_cache = linear_forward(A, W, b)
print("Z = " + str(Z))

Expected output:

Z [[ 3.26295337 -1.23429987]]
时间: 2024-10-13 23:03:32

Building your Deep Neural Network: Step by Step¶的相关文章

第四周:Deep Neural Networks(深层神经网络)----------2.Programming Assignments: Building your Deep Neural Network: Step by Step

Building your Deep Neural Network: Step by Step Welcome to your third programming exercise of the deep learning specialization. You will implement all the building blocks of a neural network and use these building blocks in the next assignment to bui

Deep Neural Network for Image Classification: Application

When you finish this, you will have finished the last programming assignment of Week 4, and also the last programming assignment of this course! You will use use the functions you'd implemented in the previous assignment to build a deep network, and

What are the advantages of ReLU over sigmoid function in deep neural network?

The state of the art of non-linearity is to use ReLU instead of sigmoid function in deep neural network, what are the advantages? I know that training a network when ReLU is used would be faster, and it is more biological inspired, what are the other

Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually make the performance degrade?

Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually make the performance degrade? I found this to be really puzzling. A deeper NN is supposed to be more powerful or at least equal to a shallower NN. I

深度学习论文笔记--Recover Canonical-View Faces in the Wild with Deep Neural Network

文章来源:CVPR2014 作者:Zhenyao Zhu,Ping Luo,Xiaogang Wang,Xiaoou Tang (香港中文大学果然牛啊,CVPR一刷一大堆) 主要内容: 提出了利用深度学习(还是CNN)来进行人脸图像重构正面人脸,然后利用重构的正面人脸图像来进行人脸的verification,当然能够取得更高的准确率(比没有用正脸去verification),文章提出利用DL来学习从任意脸到canonical 脸的转换,可以认为是一个回归问题(也不一定非得用DL方法来做). 现有

论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation

Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation xx

课程一,第四周(Deep Neural Networks) —— 2.Programming Assignments: Deep Neural Network - Application

Deep Neural Network - Application Congratulations! Welcome to the fourth programming exercise of the deep learning specialization. You will now use everything you have learned to build a deep neural network that classifies cat vs. non-cat images. In

【原创】深度神经网络(Deep Neural Network, DNN)

线性模型通过特征间的现行组合来表达“结果-特征集合”之间的对应关系.由于线性模型的表达能力有限,在实践中,只能通过增加“特征计算”的复杂度来优化模型.比如,在广告CTR预估应用中,除了“标题长度.描述长度.位次.广告id,cookie“等这样的简单原始特征,还有大量的组合特征(比如”位次-cookie“ 表示用户对位次的偏好).事实上,现在很多搜索引擎的广告系统用的都是Logistic Regression模型(线性),而模型团队最重要的工作之一就是“特征工程 (feature engineer

Towards a Robust Deep Neural Network in Text Domain A Survey

摘要 这篇文章主要总结文本中的对抗样本,包括器中的攻击方法和防御方法,比较它们的优缺点. 最后给出这个领域的挑战和发展方向. 1 介绍 对抗样本有两个核心:一是扰动足够小:二是可以成功欺骗网络. 所有DNNs-based的系统都有受到对抗攻击的潜在可能. 很多NLP任务使用了DNN模型,例如:文本分类,情感分析,问答系统,等等. 以上是一个对抗攻击实例.除此之外,对抗样本还会毒害网络环境,阻碍对恶意信息[21]-[23]的检测. 除了对比近些年的对抗攻击和防御方法,此外,文章还会讲CV和NLP中