glBindFramebuffer() 离屏渲染+双缓存+读取opengl像素 glReadPixels()

Opengl4.0中可以进行离屏渲染,即创造一个帧缓存对象(FBO),绑定一个帧缓存对象后,所有对Op--engl的操作都会针对这个帧缓存对象执行。而最近做项目时,在做一个拍照功能——读取Opengl渲染出的像素,并存入到BMP位图中。项目采用的是Opengl1.0和Opengl4.3结合的方法,并且两者的使用相对独立。使用旧的Opengl方法运行程序时,通过
glReadBuffer(GL_FRONT);//指定要读取的缓存
glReadPixels(0, 0, width, height, GL_BGRA_EXT, GL_UNSIGNED_BYTE, (unsigned char*)imageData);
即可读取到像素,并保存起来。
但是,一旦使用Opengl4.3进行离屏渲染后,发现glReadBuffer()和glReadPixels()不能再读取到像素,于是我对每一部分使用Opengl4.3的代码都做了glGetError()检测,发现使用Opengl4.3的代码部分并没有调用错误,所以就一直查不出来问题在哪里。最后我想会不会是Opengl绑定的问题,终于发现Opengl4.3使用离屏渲染后没有解绑帧缓存,即:
glBindFramebuffer(GL_FRAMEBUFFER, GL_NONE);
于是我去查了www.khronos.org/关于glBindFramebuffer的定义:
While a non-zero framebuffer object name is bound, all rendering to the framebuffer (with glDrawArrays and glDrawElements) and reading from the framebuffer (with glReadPixelsglCopyTexImage2D, or glCopyTexSubImage2D) use the images attached to the application-created framebuffer object rather than the default window-system-provided framebuffer.
Application created framebuffer objects (i.e. those with a non-zero name) differ from the default window-system-provided framebufferin a few important ways. First, they have modifiable attachment points for a color buffer, a depth buffer, and a stencil buffer to which framebuffer attachable images may be attached and detached. Second, the size and format of the attached images are controlled entirely within the GL and are not affected by window-system events, such as pixel format selection, window resizes, and display mode changes. Third, when rendering to or reading from an application created framebuffer object, the pixel ownership test always succeeds (i.e. they own all their pixels).Fourth, there are no visible color buffer bitplanes, only a single "off-screen" color image attachment, so there is no sense of front and back buffers or swapping. Finally, there is no multisample buffer, so the value of the implementation-dependent state variables GL_SAMPLES and GL_SAMPLE_BUFFERS are both zero for application created framebuffer objects.
也就是说,使用glBindFramebuffer()进行离屏渲染时,Opengl的渲染和读取都是通过attached的纹理对帧缓存进行操作的,不再是对windows系统提供的默认帧缓存进行操作,所以我们见到的屏幕上显示出来的图像并不是一个可见的颜色缓存位面(visible color buffer bitplane),只不过是一个“离屏”的颜色纹理("off-screen" color image attachment),所以双缓存就不起作用了(即使调用swapbuffer(),像素也不会被渲染到前后缓存中),所以glReadBuffer(GL_FRONT);也就读取不出像素出来。
这个Bug前后找了将近两个星期,在这里Mark一下,说白了还是对Opengl理解不够,Opengl的使用个人感觉比较晦涩,还需要好好研究。希望对大家有所帮助。
格式一直调不好。。好吧。。
时间: 2024-11-19 16:13:02

glBindFramebuffer() 离屏渲染+双缓存+读取opengl像素 glReadPixels()的相关文章

开始我的GL离屏渲染绑定[转]

地址: http://wiki.woodpecker.org.cn/moin/lilin/swig-glBmpContext 呵呵,有了第一次的经验,我们就要开始我们的GL离屏渲染的绑定了. 关 于OpenGL的离屏渲染,前面已经有一些涉及了.再说一下吧,OpenGL有两种渲染方式:一种是通过操作系统打开窗口进行渲染,然后可以直接在屏幕上 显示,这种渲染方式叫做屏幕渲染.一种通过在内存中一块位图区域内渲染,这种渲染方式在没有通过SwapBuffer方式前不可以在屏幕上显示,所以这种 方法叫离屏渲

离屏渲染优化

离屏渲染(Offscreen Render) objc.io 出品的 Getting Pixels onto the Screen 的翻译版绘制像素到屏幕上应该是国内对离屏渲染这个概念推广力度最大的一篇文章了.文章里提到「直接将图层合成到帧的缓冲区中(在屏幕上)比先创建屏幕外缓冲区,然后渲染到纹理中,最后将结果渲染到帧的缓冲区中要廉价很多.因为这其中涉及两次昂贵的环境转换(转换环境到屏幕外缓冲区,然后转换环境到帧缓冲区).」触发离屏渲染后这种转换发生在每一帧,在界面的滚动过程中如果有大量的离屏渲

[ios]离屏渲染优化

原文链接:https://mp.weixin.qq.com/s?__biz=MjM5NTIyNTUyMQ==&mid=2709544818&idx=1&sn=62d0d2e9a363d250beb2d6887dca54b3&scene=0&key=b28b03434249256bb3a6b7bd2f2cbe21550293fa9af7ff8669e50331f9be4207e196edd9757d3c09338a394b4dfefce6&ascene=1&a

Android OpenGL ES 离屏渲染(offscreen render)

通常在Android上使用OpenGL ES,都是希望把渲染后的结果显示在屏幕上,例如图片处理.模型显示等.这种情况下,只需要使用Android API中提供的GLSurfaceView类和Renderer类,在这两个类提供的初始化.回调函数中设置/编写相应的代码即可.不过,如果不希望把渲染结果显示在屏幕上,也就是所说的离屏渲染(offscreen render),这两个类就帮不上忙了.在此介绍一下如何在Android系统上做OpenGL ES 的离屏渲染. 1.基础知识 要想使用OpenGL

关于OpenGL Framebuffer Object、glReadPixels与离屏渲染

最近写论文需要用到离屏渲染(主要是因为模型太大普通窗口绘制根本做不了),于是翻阅了红宝书查了下相关api和用法.中文版的红宝书可读性有点差,很多地方翻译地晦涩,但好歹读起来比较快,主要相关章节为第8章和第10章(可以连带把第9章读完以后写GLSL会顺利成章).貌似superbible可读性更强,但红宝书讲得也差不多了就没再继续看. 由于红宝书过于学术,想动手还是最好查查网上的资料,于是把一些还可以的资料列一下. 关于FBO: OpenGL中的FBO对象(含源码) OpenGL的帧缓冲对象和浮点纹

OpenGL于MFC使用汇总(三)——离屏渲染

有时直接创建OpenGL形式不适合,或者干脆不同意然后创建一个表单,正如我现在这个项目,创建窗体不显示,它仅限于主框架.而我只是ActiveX里做一些相关工作,那仅仅能用到OpenGL的离屏渲染技术了~即不直接绘制到窗体上,而是绘制到一张位图上.然后再次调用这张位图实现兴许的工作. 以下就总结怎么使用所谓的"离屏渲染". const int WIDTH = 500; const int HEIGHT = 500; // Create a memory DC compatible wit

iOS 离屏渲染的研究

GPU渲染机制: CPU 计算好显示内容提交到 GPU,GPU 渲染完成后将渲染结果放入帧缓冲区,随后视频控制器会按照 VSync 信号逐行读取帧缓冲区的数据,经过可能的数模转换传递给显示器显示. GPU屏幕渲染有以下两种方式: On-Screen Rendering意为当前屏幕渲染,指的是GPU的渲染操作是在当前用于显示的屏幕缓冲区中进行. Off-Screen Rendering意为离屏渲染,指的是GPU在当前屏幕缓冲区以外新开辟一个缓冲区进行渲染操作. 特殊的离屏渲染:如果将不在GPU的当

iOS 离屏渲染

GPU渲染机制: CPU 计算好显示内容提交到 GPU,GPU 渲染完成后将渲染结果放入帧缓冲区,随后视频控制器会按照 VSync 信号逐行读取帧缓冲区的数据,经过可能的数模转换传递给显示器显示. GPU屏幕渲染有以下两种方式: On-Screen Rendering意为当前屏幕渲染,指的是GPU的渲染操作是在当前用于显示的屏幕缓冲区中进行. Off-Screen Rendering意为离屏渲染,指的是GPU在当前屏幕缓冲区以外新开辟一个缓冲区进行渲染操作. 特殊的离屏渲染:如果将不在GPU的当

iOS离屏渲染简书

更详细地址https://zsisme.gitbooks.io/ios-/content/chapter15/offscreen-rendering.html(包含了核心动画) GPU渲染机制: CPU 计算好显示内容提交到 GPU,GPU 渲染完成后将渲染结果放入帧缓冲区,随后视频控制器会按照 VSync 信号逐行读取帧缓冲区的数据,经过可能的数模转换传递给显示器显示. GPU屏幕渲染有以下两种方式: On-Screen Rendering意为当前屏幕渲染,指的是GPU的渲染操作是在当前用于显