POJ 1459 & ZOJ 1734 Power Network (网络最大流)

http://poj.org/problem?id=1459

http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1734


Power Network

Time Limit: 2000MS   Memory Limit: 32768K
Total Submissions: 22674   Accepted: 11880

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount
0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power
transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of
Con.

An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y.
The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets
(u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set
ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can
occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
         (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
         (0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6

Hint

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second
data set encodes the network from figure 1.

Source

Southeastern Europe 2003

题意:

一共有n个点,其中np个发电站,nc个用户,剩余的是中转站,有m条电缆(有向),电缆上有容量限制,发电站有发电上限,用户有耗电上限,求电网中最大消耗。

分析:

显然是网络最大流,发电站是源点,用户是汇点,建立超级源点与超级汇点,超级源点与发电站连一条有向边,容量为该发电站的发电上限,用户与超级汇点连一条有向边,容量为该用户的耗电上限。

这题我分别用EK算法和Dinic算法实现,发现在本题中Dinic算法的效率比EK算法高了近20倍!而在POJ 2112中,Dinic算法也比EK算法快了7倍多!Dinic简直就是神器啊,以后都用他了。

比较两种算法,EK算法是一次BFS找一条增广路;Dinic是一次BFS建立分层图,在该分层图上多次DFS找出多条增广路,以此减少BFS的次数,从而获得更高的效率。

EK算法实现:

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<algorithm>
#include<ctime>
#include<cctype>
#include<cmath>
#include<string>
#include<cstring>
#include<stack>
#include<queue>
#include<list>
#include<vector>
#include<map>
#include<set>
#define sqr(x) ((x)*(x))
#define LL long long
#define itn int
#define INF 0x3f3f3f3f
#define PI 3.1415926535897932384626
#define eps 1e-10
#define maxm 23456
#define maxn 107

using namespace std;

int fir[maxn];
int u[maxm],v[maxm],cap[maxm],flow[maxm],nex[maxm];
int e_max;
int p[maxn],q[maxn],d[maxn];

void add_edge(int _u,int _v,int _w)
{
    int e;
    e=e_max++;
    u[e]=_u;v[e]=_v;cap[e]=_w;
    nex[e]=fir[u[e]];fir[u[e]]=e;
    e=e_max++;
    u[e]=_v;v[e]=_u;cap[e]=0;
    nex[e]=fir[u[e]];fir[u[e]]=e;
}

int max_flow(int s,int t)
{
    memset(flow,0,sizeof flow);
    int total_flow=0;

    for (;;)
    {
        memset(d,0,sizeof d);
        d[s]=INF;
        int f=0,r=0;
        q[0]=s;
        while (f<=r)
        {
            int _u=q[f++];
            for (int e=fir[_u];~e;e=nex[e])
            {
                if (!d[v[e]] && cap[e]>flow[e])
                {
                    q[++r]=v[e];
                    p[v[e]]=e;
                    d[v[e]]=min(d[u[e]],cap[e]-flow[e]);
                }
            }
        }

        if (d[t]==0) break;

        for (int e=p[t];;e=p[u[e]])
        {
            flow[e]+=d[t];
            flow[e^1]-=d[t];
            if (u[e]==s) break;
        }

        total_flow+=d[t];
    }

    return total_flow;
}

int main()
{
    #ifndef ONLINE_JUDGE
        freopen("/home/fcbruce/文档/code/t","r",stdin);
    #endif // ONLINE_JUDGE

    int n,np,nc,m,_u,_v,_w;

    while (~scanf("%d %d %d %d",&n,&np,&nc,&m))
    {
        e_max=0;
        int s=n,t=n+1;
        memset(fir,-1,sizeof fir);
        for (int i=0;i<m;i++)
        {
            scanf(" (%d,%d)%d",&_u,&_v,&_w);
            add_edge(_u,_v,_w);
        }
        for (int i=0;i<np;i++)
        {
            scanf(" (%d)%d",&_u,&_w);
            add_edge(s,_u,_w);
        }

        for (int i=0;i<nc;i++)
        {
            scanf(" (%d)%d",&_u,&_w);
            add_edge(_u,t,_w);
        }

        printf("%d\n",max_flow(s,t));
    }

    return 0;
}

dinic算法实现:

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<algorithm>
#include<ctime>
#include<cctype>
#include<cmath>
#include<string>
#include<cstring>
#include<stack>
#include<queue>
#include<list>
#include<vector>
#include<map>
#include<set>
#define sqr(x) ((x)*(x))
#define LL long long
#define itn int
#define INF 0x3f3f3f3f
#define PI 3.1415926535897932384626
#define eps 1e-10
#define maxm 13000
#define maxn 300

using namespace std;

int G[maxn][maxn];

int fir[maxn];
int u[maxm],v[maxm],cap[maxm],flow[maxm],nex[maxm];
int e_max;
int lv[maxn],iter[maxn];
int q[maxm];

void add_edge(int _u,int _v,int _w)
{
    int e;
    e=e_max++;
    u[e]=_u;v[e]=_v;cap[e]=_w;
    nex[e]=fir[u[e]];fir[u[e]]=e;
    e=e_max++;
    u[e]=_v;v[e]=_u;cap[e]=0;
    nex[e]=fir[u[e]];fir[u[e]]=e;
}

void dinic_bfs(int s)
{
    int f,r;
    memset(lv,-1,sizeof lv);
    q[f=r=0]=s;
    lv[s]=0;
    while(f<=r)
    {
        int x=q[f++];
        for (int e=fir[x];~e;e=nex[e])
        {
            if (cap[e]>flow[e] && lv[v[e]]<0)
            {
                lv[v[e]]=lv[u[e]]+1;
                q[++r]=v[e];
            }
        }
    }
}

int dinic_dfs(int _u,int t,int _f)
{
    if (_u==t)  return _f;
    for (int &e=iter[_u];~e;e=nex[e])
    {
        if (cap[e]>flow[e] && lv[_u]<lv[v[e]])
        {
            int _d=dinic_dfs(v[e],t,min(_f,cap[e]-flow[e]));
            if (_d>0)
            {
                flow[e]+=_d;
                flow[e^1]-=_d;
                return _d;
            }
        }
    }

    return 0;
}

int max_flow(int s,int t)
{

    memset(flow,0,sizeof flow);
    int total_flow=0;

    for (;;)
    {
        dinic_bfs(s);
        if (lv[t]<0)    return total_flow;
        memcpy(iter,fir,sizeof iter);
        int _f;

        while ((_f=dinic_dfs(s,t,INF))>0)
            total_flow+=_f;
    }

    return total_flow;
}

int main()
{
    #ifndef ONLINE_JUDGE
        freopen("/home/fcbruce/文档/code/t","r",stdin);
    #endif // ONLINE_JUDGE

    int l=INF,r=0,K,C,M;

    scanf("%d %d %d",&K,&C,&M);
    for (int i=1;i<=K+C;i++)
        for (int j=1;j<=K+C;j++)
            scanf("%d",&G[i][j]),G[i][j]=G[i][j]?G[i][j]:INF;

    for (int k=1;k<=K+C;k++)
        for (int i=1;i<=K+C;i++)
            for (int j=1;j<=K+C;j++)
                G[i][j]=min(G[i][k]+G[k][j],G[i][j]);
    int ans=-1;
//    printf("%d %d\n",l,r);
    l=0;r=INF;
    while (l<=r)
    {
        int mid=l+r>>1;
        e_max=0;
        memset(fir,-1,sizeof fir);
        for (int i=K+1;i<=K+C;i++)
            add_edge(0,i,1);

        for (int i=1;i<=K;i++)
            add_edge(i,K+C+1,M);

        for (int i=K+1;i<=K+C;i++)
            for (int j=1;j<=K;j++)
                if (G[i][j]<=mid)
                    add_edge(i,j,1);

//        printf("mid=%d\n",mid);

        if (max_flow(0,K+C+1)==C)
        {
            ans=mid;
            r=mid-1;
        }
        else
        {
            l=mid+1;
        }
    }
    printf("%d\n",ans);

    return 0;
}

POJ 1459 & ZOJ 1734 Power Network (网络最大流)

时间: 2024-08-11 09:56:45

POJ 1459 & ZOJ 1734 Power Network (网络最大流)的相关文章

POJ 1459 Power Network(网络流 最大流 多起点,多汇点)

Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 22987   Accepted: 12039 Description A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied

poj 1459 Power Network, 最大流,多源多汇

点击打开链接 多源多汇最大流,虚拟一个源点s'和一个汇点t',原来的源点.汇点向它们连边. #include<cstdiO> #include<cstring> #include<iostream> #include<algorithm> #include<queue> #include<vector> using namespace std; const int maxn = 500 + 5; const int INF = 100

UVA 10330 Power Transmission(网络最大流)

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1271  Power Transmission  The Problem DESA is taking a new project to transfer power. Power is generated by the newly established plant in Barisal.

POJ 1459 Power Network (网络流最大流基础 多源点多汇点 Edmonds_Karp算法)

Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 24056   Accepted: 12564 Description A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied

POJ 1459 &amp;&amp; ZOJ 1734--Power Network【最大流dinic】

Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 25108   Accepted: 13077 Description A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied

POJ1459 Power Network【最大流】【Edmond-Karp】

第一道网络流题,纪念下~~~ 题目链接: http://poj.org/problem?id=1459 题目大意: 一个电力网络包含很多节点(发电站.消费者以及中转站)和电力传输线.所有发电站不消耗电力, 所有消费者不产生电力,所有中转站不产生也不消耗电力.在网络中,任意两点u和v之间最多只 有一条传输线的存在,且能够从u望v传输最多w单位容量.计算整个网络的最大电力消耗. 思路: 一道非常基础.非常典型的网络流题目.每个发电站当做一个源点,每个消费者当做一个汇点.但 是这样子并不适合任何一种求

POJ 1459:Power Network(最大流)

http://poj.org/problem?id=1459 题意:有np个发电站,nc个消费者,m条边,边有容量限制,发电站有产能上限,消费者有需求上限问最大流量. 思路:S和发电站相连,边权是产能上限,消费者和T相连,边权是需求上限,边的话就按题意加就好了.难点更觉得在于输入..加个空格..边数组要*2,因为有反向边. 1 #include <cstdio> 2 #include <algorithm> 3 #include <iostream> 4 #includ

ZOJ 1542 POJ 1861 Network 网络 最小生成树,求最长边,Kruskal算法

题目连接:ZOJ 1542 POJ 1861 Network 网络 Network Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, t

POJ 1459 Power Network(ISAP 裸最大流)

题目链接:http://poj.org/problem?id=1459 注意输入格式就行,还是ISAP #include <iostream> #include <cstdlib> #include <cstdio> #include <cstring> #include <queue> #include <algorithm> const int N = 210; const int maxn = 300; const int ma