Description
Given a tree (a connected graph with no cycles), you have to find the farthest nodes in the tree. The edges of the tree are weighted and undirected. That means you have to find two nodes in the tree whose distance is maximum amongst all nodes.
Input
Input starts with an integer T (≤ 10), denoting the number of test cases.
Each case starts with an integer n (2 ≤ n ≤ 30000) denoting the total number of nodes in the tree. The nodes are numbered from 0 to n-1. Each of the next n-1 lines will contain three integers u v w (0 ≤ u, v < n, u ≠ v, 1 ≤ w ≤ 10000) denoting that node u and v are connected by an edge whose weight is w. You can assume that the input will form a valid tree.
Output
For each case, print the case number and the maximum distance.
Sample Input
2
4
0 1 20
1 2 30
2 3 50
5
0 2 20
2 1 10
0 3 29
0 4 50
Sample Output
Case 1: 100
Case 2: 80
1 #include<iostream> 2 #include<cstring> 3 #include<cstdio> 4 #include<queue> 5 #include<vector> 6 #include<algorithm> 7 using namespace std; 8 const int maxn=3e4+5; 9 struct Edge 10 { 11 int v,w; 12 }; 13 struct node 14 { 15 int u,tot; 16 }; 17 bool vis[maxn]; 18 int ans,ed; 19 vector<Edge>G[maxn]; 20 void bfs(int u) 21 { 22 vis[u]=1; 23 queue<node>q; 24 node t1,t2; 25 t1.u=u,t1.tot=0; 26 q.push(t1); 27 while(!q.empty()) 28 { 29 t1=q.front();q.pop(); 30 if(ans<t1.tot)ans=t1.tot,ed=t1.u; 31 int len=G[t1.u].size(); 32 for(int i=0;i<len;i++) 33 { 34 int v=G[t1.u][i].v; 35 if(vis[v])continue; 36 t2.u=v,t2.tot=G[t1.u][i].w+t1.tot; 37 q.push(t2); 38 vis[v]=1; 39 } 40 } 41 } 42 int main() 43 { 44 int T; 45 scanf("%d",&T); 46 for(int kase=1;kase<=T;kase++) 47 { 48 int n; 49 ans=0; 50 scanf("%d",&n); 51 for(int i=0;i<n;i++)G[i].clear(); 52 for(int i=0;i<n-1;i++) 53 { 54 int u,v,w; 55 scanf("%d%d%d",&u,&v,&w); 56 G[u].push_back((Edge){v,w}); 57 G[v].push_back((Edge){u,w}); 58 } 59 memset(vis,0,sizeof(vis)); 60 bfs(0); 61 memset(vis,0,sizeof(vis)); 62 bfs(ed); 63 printf("Case %d: ",kase); 64 printf("%d\n",ans); 65 } 66 return 0; 67 }