第一题:
Time Limit: 3000MS | Memory Limit: Unknown | 64bit IO Format: %lld & %llu |
Description
Neal is very curious about combinatorial problems, and now here comes a problem about words. Knowing that Ray has a photographic memory and this may not trouble him, Neal gives it to Jiejie.
Since Jiejie can‘t remember numbers clearly, he just uses sticks to help himself. Allowing for Jiejie‘s only 20071027 sticks, he can only record the remainders of the numbers divided by total amount of sticks.
The problem is as follows: a word needs to be divided into small pieces in such a way that each piece is from some given set of words. Given a word and the set of words, Jiejie should calculate the number of
ways the given word can be divided, using the words in the set.
Input
The input file contains multiple test cases. For each test case: the first line contains the given word whose length is no more than 300 000.
The second line contains an integer S , 1S4000 .
Each of the following S lines contains one word from the set. Each word will be at most 100 characters long. There will be no two identical words and all letters in the words
will be lowercase.
There is a blank line between consecutive test cases.
You should proceed to the end of file.
Output
For each test case, output the number, as described above, from the task description modulo 20071027.
Sample Input
abcd 4 a b cd ab
Sample Output
Case 1: 2
#include <cstdio> #include <cstring> #include <iostream> using namespace std; #define maxn 400000 + 10 #define M 300000 + 10 #define mod 20071027 int tree[maxn][27], val[maxn], top; int d[maxn]; char s[M], tmp[105]; void init() { top = 1; memset(tree[0], 0, sizeof tree[0]); memset(d, 0, sizeof d); } void insert(char *s, int v) { int len = strlen(s), u = 0; for(int i = 0; i < len; i++) { int c = s[i] - 'a' ; if(!tree[u][c]) { memset(tree[top], 0, sizeof tree[top]); val[top] = 0; tree[u][c] = top++; } u = tree[u][c]; } val[u] = v; } int len ; int query(char *s, int pos) { int u = 0; int res = 0; for(int i = pos; i < len; i++) { int c = s[i] - 'a' ; u = tree[u][c]; if(!u) return res; if(val[u]) { res = (res + d[i + 1] ) % mod ; } } return res; } int main() { int kase = 0; while(~scanf("%s", s)) { init(); len = strlen(s); int n; scanf("%d", &n); for(int i = 0; i < n; i++) { scanf("%s", tmp); insert(tmp, 1); } d[len] = 1; for(int i = len - 1; i >= 0; i--) { d[i] = query(s, i); } printf("Case %d: %d\n", ++kase, d[0]); } return 0; }
第二题:
ZYB loves Xor I
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 734 Accepted Submission(s): 320
Problem Description
Memphis loves xor very musch.Now he gets an array A.The length of A is n.Now he wants to know the sum of all (lowbit(Ai xor Aj)) (i,j∈[1,n])
We define that lowbit(x)=2k,k
is the smallest integer satisfied ((x and 2k)>0)
Specially,lowbit(0)=0
Because the ans may be too big.You just need to output ans mod
998244353
Input
Multiple test cases, the first line contains an integer T(no more than 10), indicating the number of cases. Each test case contains two lines
The first line has an integer n
The second line has n integers A1,A2....An
n∈[1,5?104],Ai∈[0,229]
Output
For each case, the output should occupies exactly one line. The output format is Case #x: ans, here x is the data number begins at 1.
Sample Input
2 5 4 0 2 7 0 5 2 6 5 4 0
Sample Output
Case #1: 36 Case #2: 40
Source
Recommend
hujie | We have carefully selected several similar problems for you: 5352 5351 5350 5348 5347
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #define MOD 998244353 #define M 2000010 using namespace std; int top;// top 表示节点个数 int tree[M][2]; // 字典树 int val[M]; //字符串的权值 当val[i] 大于0时i是单词节点 void init() { top=1; //memset(tree, 0, sizeof tree); memset(tree[0], 0, sizeof tree[0]); memset(val, 0, sizeof val); } void insert(int v) { int u = 0;//根节点 for(int i = 0; i < 30 ; i++) { int t = v & ( 1<< i ); if(t) t = 1; if(!tree[u][t]) { memset(tree[top], 0, sizeof tree[top]); val[top] = 1; tree[u][t] = top++; } else { val[tree[u][t]]++; } u = tree[u][t]; } } int ans; void find(int v) { int u = 0; for(int i = 0; i < 30; i++) { int t = v & (1 << i); if(t) t = 1; if(tree[u][t ^ 1]) ans = ( ans + (val[tree[u][t ^ 1]]) * (1 << i)) % MOD; u = tree[u][t] ; } } int a[M]; int main() { int T, n; scanf("%d", &T); int kase = 0; while(T--) { init(); ans = 0; scanf("%d", &n); for(int i=0; i<n; i++) { scanf("%d", &a[i]); insert(a[i]); } for(int i=0; i<n; i++) find(a[i]); printf("Case #%d: %d\n", ++kase, ans); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。