使用逻辑回归分类手写数字MNIST

英文原文请参考http://www.deeplearning.net/tutorial/logreg.html

这里,我们将使用Theano实现最基本的分类器:逻辑回归,以及学习数学表达式如何映射成Theano图。

逻辑回归是一个基于概率的线性分类器,W和b为参数。通过投射输入向量到一组超平面,每个对应一个类,输入到一个平面的距离反应它属于对应类的概率。

那么输入向量x为i类的概率,数值表示如下:

预测类别为概率最大的类,及:

用Theano实现的代码如下:

 # initialize with 0 the weights W as a matrix of shape (n_in, n_out)
        self.W = theano.shared(
            value=numpy.zeros(
                (n_in, n_out),
                dtype=theano.config.floatX
            ),
            name=‘W‘,
            borrow=True
        )
        self.b = theano.shared(
            value=numpy.zeros(
                (n_out),
                dtype=theano.config.floatX
            ),
            name=‘b‘,
            borrow=True
        )
        self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W) + self.b)
        self.y_pred = T.argmax(self.p_y_given_x, axis=-1)

由于模型的参数在训练中维持一个持久的状态,因此我们将W,b设为共享变量,也是Theano符号变量。

目前定义的模型还没有做任何有用的事情,接下来将介绍如何学习最优参数。

定义损失函数(Loss Function)

对于多类回归,常见的是使用negative log-likelihood作为损失。

在参数θ下,最大化数据集D的似然函数,让我们先定义似然函数和损失:

这里使用随机梯度下降的方法求最小值。

创建逻辑回归类

代码请参考源网址:http://www.deeplearning.net/tutorial/logreg.html

时间: 2024-11-07 04:54:26

使用逻辑回归分类手写数字MNIST的相关文章

学习笔记TF024:TensorFlow实现Softmax Regression(回归)识别手写数字

TensorFlow实现Softmax Regression(回归)识别手写数字.MNIST(Mixed National Institute of Standards and Technology database),简单机器视觉数据集,28X28像素手写数字,只有灰度值信息,空白部分为0,笔迹根据颜色深浅取[0, 1], 784维,丢弃二维空间信息,目标分0~9共10类.数据加载,data.read_data_sets, 55000个样本,测试集10000样本,验证集5000样本.样本标注信

DeepLearning (四) 基于自编码算法与softmax回归的手写数字识别

[原创]Liu_LongPo 转载请注明出处 [CSDN]http://blog.csdn.net/llp1992 softmax 回归模型,是logistic 回归模型在多分类问题上的推广.关于logistic回归算法的介绍,前面博客已经讲得很清楚,详情可以参考博客 机器学习实战ByMatlab(五)Logistic Regression 在logistic回归模型中,我们的激励函数sigmoid的输入为: z=θ0x0+θ1x1+θ2x2+...+θnxn 则可以得到假设函数为: hθ(x)

利用CNN神经网络实现手写数字mnist分类

题目: 1)In the first step, apply the Convolution Neural Network method to perform the training on one single CPU and testing 2)In the second step, try the distributed training on at least two CPU/GPUs and evaluate the training time. 一.单机单卡实现mnist_CNN 1

tensorflow学习之(十)使用卷积神经网络(CNN)分类手写数字0-9

#卷积神经网络cnn import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #数据包,如果没有自动下载 number 1 to 10 data mnist = input_data.read_data_sets('MNIST_data',one_hot=True) #用测试集来评估神经网络的准确度 def computer_accuracy(v_xs,v_ys): global pre

简单HOG+SVM mnist手写数字分类

使用工具 :VS2013 + OpenCV 3.1 数据集:minst 训练数据:60000张 测试数据:10000张 输出模型:HOG_SVM_DATA.xml 数据准备 train-images-idx3-ubyte.gz:  training set images (9912422 bytes) train-labels-idx1-ubyte.gz:  training set labels (28881 bytes) t10k-images-idx3-ubyte.gz:   test s

python逻辑回归分类MNIST数据集

一.逻辑回归的介绍 logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域.例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等.以胃癌病情分析为例,选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群必定具有不同的体征与生活方式等.因此因变量就为是否胃癌,值为"是"或"否",自变量就可以包括很多了,如年龄.性别.饮食习惯.幽门螺杆菌感染等.自变量既可以是连续的,也可以是分类的.然后通

KNN分类算法实现手写数字识别

需求: 利用一个手写数字"先验数据"集,使用knn算法来实现对手写数字的自动识别: 先验数据(训练数据)集: ?数据维度比较大,样本数比较多. ? 数据集包括数字0-9的手写体. ?每个数字大约有200个样本. ?每个样本保持在一个txt文件中. ?手写体图像本身的大小是32x32的二值图,转换到txt文件保存后,内容也是32x32个数字,0或者1,如下: 数据集压缩包解压后有两个目录:(将这两个目录文件夹拷贝的项目路径下E:/KNNCase/digits/) ?目录trainingD

MNIST手写数字数据库

手写数字库很容易建立,但是总会很浪费时间.Google实验室的Corinna Cortes和纽约大学柯朗研究所的Yann LeCun建有一个手写数字数据库,训练库有60,000张手写数字图像,测试库有10,000张. 请访问原站 http://yann.lecun.com/exdb/mnist/ 该数据库在一个文件中包含了所有图像,使用起来有所不便.如果我把每个图像分别保存,成了图像各自独立的数据库. 并在Google Code中托管. 如果你有需要,欢迎在此下载: http://yann.le

Tensorflow实践 mnist手写数字识别

minst数据集                                         tensorflow的文档中就自带了mnist手写数字识别的例子,是一个很经典也比较简单的入门tensorflow的例子,非常值得自己动手亲自实践一下.由于我用的不是tensorflow中自带的mnist数据集,而是从kaggle的网站下载下来的,数据集有些不太一样,所以直接按照tensorflow官方文档上的参数训练的话还是踩了一些坑,特此记录. 首先从kaggle网站下载mnist数据集,一份是