计量经济学研究的直接目的是确定总体回归函数Yi=B1+B2Xi+ui,然而能够得到的只是来自总体的若干样本的观测值,要用样本信息建立的样本回归函数尽可能“接近”地去估计总体回归函数。为此,可以以从不同的角度去确定建立样本回归函数的准则,也就有了估计回归模型参数的多种方法。
最小二乘估计法用来确定函数y(x) = b1x + b0 中b1和b0的估计值。
y(x)是n个点(x0,y0) , ... (Xn-1 , Yn-1)的最佳拟合线。
b1 = (n * sigma(Xi * Yi) - singma(Xi)*singma(Yi) ) / (n*singma(pow(Xi)) - pow((singma(Xi))) ;
b0 = (sigma(Yi) - b1 * singma(Xi)) / n ;
将值b0和b1求出后可代入y(x) = b1 + b0 求出相应的值。
接下来写一个例子:
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <math.h> #define NR(x) sizeof(x)/sizeof(x[0]) //最小二乘法实现 void lsqe(const double *x, const double *y, int n, double *b1, double *b0) { int i; double sumx,sumy,sumx2,sumxy; sumx = 0.0; sumy = 0.0; sumx2 = 0.0; sumxy = 0.0; //计算N次 for (i = 0; i < n; i++) { //将横坐标方向的x值进行累加 sumx = sumx + x[i]; //将纵坐标方向的y值进行累加 sumy = sumy + y[i]; sumx2 = sumx2 + pow(x[i], 2.0); sumxy = sumxy + (x[i] * y[i]); } //根据公式求解b1和b0的值 *b1 = (sumxy - ((sumx * sumy)/(double)n)) / (sumx2-(pow(sumx,2.0)/(double)n)); *b0 = (sumy - ((*b1) * sumx)) / (double)n; return; } int main(void) { double x[] = {1.1 , 1.2 , 1.3 , 1.4 , 1.5 ,1.6} ; double y[] = {4.1 , 4.2 , 4.3 , 4.4 , 4.5 , 4.6} ; double b0 , b1 ; lsqe(x,y,NR(x),&b0,&b1); printf("%lf,%lf\n",b0,b1); return 0 ; }
运行结果:
1.000000 , 3.00000
时间: 2024-11-06 21:46:19