\documentclass[UTF8,a1paper,landscape]{ctexart}%UTF8,ctexart中文支持,landscape横向版面 \usepackage[svgnames]{xcolor} \usepackage{tikz}%画图 \usetikzlibrary{arrows,shapes,positioning} \tikzstyle arrowstyle=[scale=1] \usepackage{geometry}%页边距设置 \geometry{top=0.5cm,bottom=0.5cm,left=0.5cm,right=0.5cm} \usepackage{fancyhdr}%页头页尾页码设置 \pagestyle{fancy} \begin{document} \title{\textbf{《概率论与数理统计》学习图解}}%标题 \author{DencChaohai}%作者 \maketitle \newpage%重新开始一页 \part{概率论} \section{逻辑关系图解} \begin{center}%图形居中 \begin{tikzpicture} [level 1/.style={sibling distance=1cm},level 2/.style={sibling distance=3cm},level 3/.style={sibling distance=5cm},level 4/.style={sibling distance=7cm}]%设定树枝的长度 \tikzstyle{every node}=[scale=1]%文字缩放0.6倍 %定义 \node(编号)at(位置)[属性]{内容} %排序,先左后右,先上后下 \node(xx)at(0,0)[draw,align=center]{现象}; \node(qdxxx)at(10,10)[draw,align=center]{确定性现象}; \node(sjxxx)at(10,-10)[draw,align=center]{随机性现象}; \node(gc)at(10+5,-10+1){观察}; \node(sy)at(20,-10)[draw,align=center]{试验} [grow=up] child{node{特征} child{node{3.随机性}} child{node{2.可观察}} child{node{1.可重复}} }; \node(jg)at(20+5,-10+1){(试验中可观察的特定特征的)结果}; \node(ybd)at(30,-10)[draw,align=center]{样本点\\$\omega$}; \node(dy)at(30+1,-10-5){单一}; \node(jbsj)at(30,-20)[draw,align=center]{基本事件}; \node(hs)at(32,-20-5){函数$X=X(\omega)$}; \node(sjbl)at(30,-30)[draw,align=center]{随机变量\\$X$} [grow=left] child{node at(-5,0){概率分布$p_i=P\{X=x_i\}$,概率密度$f(x)=F‘(x)$} child{node at(-7,0){分布函数$F(x)=P\{X\leq x\}$}}}; \node(blz)at(32,-29){变量值$x_i,x$}; \node(blz)at(38,-29){密度$p_i,f(x)$}; \node(sjxl)at(30,-40)[draw,align=center]{随机向量\\$\vec{X}=\{X_1,X_2,\dots\}$} [grow=left] child{node at(-5,0){联合密度$p_{ij},f(x,y)$(边缘密度$p_i^X,p_j^Y,f_X(x),f_Y(y)$)} child{nodeat(-9,0){联合分布$F(x,y)$(边缘分布$F_X(x),F_Y(y)$)}}}; \node(qt)at(30+5,-10+1){全体}; \node(fh)at(30+5,-20+1){复合}; \node(xc)at(30+5,-30+1){相乘$x_ip_i,xf(x)$} [grow=up] child{node{一阶原点矩|期望$EX=\sum xp_i,\int xf(x)dx$} child{node{二阶中心矩|方差$DX=E(X-EX)^2$}}}; \node(qh)at(35.5,-28){求和}; \node(blhs)at(36.8,-26.8){变量函数$Y=g(Y)$}; \node(ybkj)at(40,-10)[draw,align=center]{样本空间\\$\Omega$} [grow=right] child{node at(1,0){$\Omega=\left\lbrace \omega|P(\omega)\right\rbrace $} child{node{样本点无限$\Omega=(a,b)$}} child{node{样本点有限$\Omega=\{\omega_1,\omega_2,\dots,\omega_n\}$}}}; \node(zj)at(40+1,-10-5){子集} [grow=right] child{node at(1,0){全集(必然事件)$\Omega$}} child{node at(2,0){子集(随机事件)$A,B,\dots $}} child{node at(1,0){空集(不可能事件)$\emptyset$}}; \node(sj)at(40,-20)[draw,align=center]{事件\\$A,B,\dots$}; \node(cd)at(40+1,-20-5){测度} [grow=right] child{node at(1,0){$P(\Omega)=1$}} child{node at(1,0){$0\leq P(A)\leq 1$}} child{node at(1,0){可列可加}}; \node(gl)at(40,-30)[draw,align=center]{概率\\$P(A)$} [grow=down] child{node at(-2,-2){基本概型} child{node{古典概型(有限等可能)}} child{node at(2,-1){几何概型(无限等可能)}}} child{node at(7,-2){条件概率$P(B|A)=\frac{P(AB)}{P(A)}$|乘法公式$P(AB)=P(A)P(B|A)$|独立性$P(AB)=P(A)P(B)$} [grow=down] child{node at(3,-3){贝叶斯$P(A_i|B)=\frac{P(A_iB)}{P(B)}=\frac{P(A_i)P(B|A_i)}{\sum P(A_j)P(B|A_j)}$}} child{node at(4,-1){全概率$P(B)=\sum P(A_i)P(B|A_i)$}}}; \node(lj)at(45,-29){累计,离散分段阶梯,连续积分面积}; \node(dj)at(40+5,-20+1){等价}; \node(jh)at(50,-20)[draw,align=center]{集合} [grow=right] child{node{运算律} child{node at(0+3,0){对偶律$\overline{A\cup B}=\overline{A}\cap \overline{B},\overline{A\cap B}=\overline{A}\cup \overline{B}$} child{node{分配律$A\cap(B\cup C)=(A\cap B)\cup (A\cap C),A\cup (B\cap C)=(A\cup B)\cap (A\cup C)$} child{node{交换律$A+B=B+A$}} child{node at(3,-5){结合律$A+(B+C)=(A+B)+C$}} } child{node at(3,-4){自反律$\overline{\overline{A}}=A$}}}}; \node(fbhs)at(50,-30)[draw,align=center]{分布函数\\$F(x)=P\{X\leq x\}$}; %连线 \draw[箭头](始点)--(终点) \draw[->](xx)--(qdxxx); \draw[->](xx)--(sjxxx); \draw[->](sjxxx)--(sy); \draw[->](ybd)--(jbsj); \draw[->](sy)--(ybd); \draw[->](ybd)--(ybkj); \draw[->](jbsj)--(sjbl); \draw[->](ybkj)--(sj); \draw[->](sj)--(gl); \draw[->](jbsj)--(sj); \draw[->](sjbl)--(xc); \draw[->](gl)--(xc); \draw[->](sj)--(jh); \draw[->](gl)--(fbhs); \draw[->](sjbl)--(sjxl); \draw[->](sjbl)--(gl); \end{tikzpicture} \end{center} \newpage \part{数理统计} \section{逻辑关系图解} \begin{center} \begin{tikzpicture} \node(gt)at(0,0)[fill=green,circle]{个体}; \node(zt)at(10,10)[fill=green,circle]{总体$X$}; \node(yb)at(10,-10)[fill=green,circle]{样本$(X_1,X_2,\dots)$}; \node(ztfbhs)at(20,10)[fill=green,circle]{总体分布函数$F(x)$}; \node(ybfbhs)at(20,-10)[fill=green,circle]{样本分布函数$F(x_1,x_2,\dots)$}; \node at(12,0){} [grow=right] child{node at(2,0){样本推断总体类型(类型由经验一般可以得出)}} child{node at(2,0){样本推断总体参数(主要的是推断参数)} [grow=up] child{node at(1,2){统计量(不含总体未知参数的函数)} child{node{方差}} child{node{均值}}} child{node at(8,0){枢轴量(总体类型已知,但只含一个总体未知参数的函数)}}}; \draw[->](gt)--(zt); \draw[->](gt)--(yb); \draw[->](yb)to node(tjtd)[right]{统计推断}(zt); \draw[->](zt)--(ztfbhs); \draw[->](yb)--(ybfbhs); \end{tikzpicture} \end{center} \end{document}
时间: 2024-09-30 10:14:59