(转) RSA算法原理(一)

最近用到了RSA加密算法,虽然有现成的,但是想看看它的原理,翻到此文,感觉写得很好,通俗易懂,转了。

作者: 阮一峰

日期: 2013年6月27日

如果你问我,哪一种算法最重要?

我可能会回答"公钥加密算法"

因为它是计算机通信安全的基石,保证了加密数据不会被破解。你可以想象一下,信用卡交易被破解的后果。

进入正题之前,我先简单介绍一下,什么是"公钥加密算法"。

一、一点历史

1976年以前,所有的加密方法都是同一种模式:

  (1)甲方选择某一种加密规则,对信息进行加密;

  (2)乙方使用同一种规则,对信息进行解密。

由于加密和解密使用同样规则(简称"密钥"),这被称为"对称加密算法"(Symmetric-key algorithm)。

这种加密模式有一个最大弱点:甲方必须把加密规则告诉乙方,否则无法解密。保存和传递密钥,就成了最头疼的问题。

1976年,两位美国计算机学家Whitfield Diffie 和 Martin Hellman,提出了一种崭新构思,可以在不直接传递密钥的情况下,完成解密。这被称为"Diffie-Hellman密钥交换算法"。这个算法启发了其他科学家。人们认识到,加密和解密可以使用不同的规则,只要这两种规则之间存在某种对应关系即可,这样就避免了直接传递密钥。

这种新的加密模式被称为"非对称加密算法"。

  (1)乙方生成两把密钥(公钥和私钥)。公钥是公开的,任何人都可以获得,私钥则是保密的。

  (2)甲方获取乙方的公钥,然后用它对信息加密。

  (3)乙方得到加密后的信息,用私钥解密。

如果公钥加密的信息只有私钥解得开,那么只要私钥不泄漏,通信就是安全的。

1977年,三位数学家Rivest、Shamir 和 Adleman 设计了一种算法,可以实现非对称加密。这种算法用他们三个人的名字命名,叫做RSA算法。从那时直到现在,RSA算法一直是最广为使用的"非对称加密算法"。毫不夸张地说,只要有计算机网络的地方,就有RSA算法。

这种算法非常可靠,密钥越长,它就越难破解。根据已经披露的文献,目前被破解的最长RSA密钥是768个二进制位。也就是说,长度超过768位的密钥,还无法破解(至少没人公开宣布)。因此可以认为,1024位的RSA密钥基本安全,2048位的密钥极其安全。

下面,我就进入正题,解释RSA算法的原理。文章共分成两部分,今天是第一部分,介绍要用到的四个数学概念。你可以看到,RSA算法并不难,只需要一点数论知识就可以理解。

二、互质关系

如果两个正整数,除了1以外,没有其他公因子,我们就称这两个数是互质关系(coprime)。比如,15和32没有公因子,所以它们是互质关系。这说明,不是质数也可以构成互质关系。

关于互质关系,不难得到以下结论:

  1. 任意两个质数构成互质关系,比如13和61。

  2. 一个数是质数,另一个数只要不是前者的倍数,两者就构成互质关系,比如3和10。

  3. 如果两个数之中,较大的那个数是质数,则两者构成互质关系,比如97和57。

  4. 1和任意一个自然数是都是互质关系,比如1和99。

  5. p是大于1的整数,则p和p-1构成互质关系,比如57和56。

  6. p是大于1的奇数,则p和p-2构成互质关系,比如17和15。

三、欧拉函数

请思考以下问题:

  任意给定正整数n,请问在小于等于n的正整数之中,有多少个与n构成互质关系?(比如,在1到8之中,有多少个数与8构成互质关系?)

计算这个值的方法就叫做欧拉函数,以φ(n)表示。在1到8之中,与8形成互质关系的是1、3、5、7,所以 φ(n) = 4。

φ(n) 的计算方法并不复杂,但是为了得到最后那个公式,需要一步步讨论。

第一种情况

如果n=1,则 φ(1) = 1 。因为1与任何数(包括自身)都构成互质关系。

第二种情况

如果n是质数,则 φ(n)=n-1 。因为质数与小于它的每一个数,都构成互质关系。比如5与1、2、3、4都构成互质关系。

第三种情况

如果n是质数的某一个次方,即 n = p^k (p为质数,k为大于等于1的整数),则

比如 φ(8) = φ(2^3) =2^3 - 2^2 = 8 -4 = 4。

这是因为只有当一个数不包含质数p,才可能与n互质。而包含质数p的数一共有p^(k-1)个,即1×p、2×p、3×p、...、p^(k-1)×p,把它们去除,剩下的就是与n互质的数。

上面的式子还可以写成下面的形式:

可以看出,上面的第二种情况是 k=1 时的特例。

第四种情况

如果n可以分解成两个互质的整数之积,

  n = p1 × p2

  φ(n) = φ(p1p2) = φ(p1)φ(p2)

即积的欧拉函数等于各个因子的欧拉函数之积。比如,φ(56)=φ(8×7)=φ(8)×φ(7)=4×6=24。

这一条的证明要用到"中国剩余定理",这里就不展开了,只简单说一下思路:如果a与p1互质(a<p1),b与p2互质(b<p2),c与p1p2互质(c<p1p2),则c与数对 (a,b) 是一一对应关系。由于a的值有φ(p1)种可能,b的值有φ(p2)种可能,则数对 (a,b) 有φ(p1)φ(p2)种可能,而c的值有φ(p1p2)种可能,所以φ(p1p2)就等于φ(p1)φ(p2)。

第五种情况

因为任意一个大于1的正整数,都可以写成一系列质数的积。

根据第4条的结论,得到

再根据第3条的结论,得到

也就等于

这就是欧拉函数的通用计算公式。比如,1323的欧拉函数,计算过程如下:

四、欧拉定理

欧拉函数的用处,在于欧拉定理。"欧拉定理"指的是:

如果两个正整数a和n互质,则n的欧拉函数 φ(n) 可以让下面的等式成立:

------原文是图片,无法显示了,这里写一下。

如果两个整数a和n互质,则(a^φ(n))%n=1,如2和7,7的欧拉函数为6,2^6=64,64%7=1

也就是说,a的φ(n)次方被n除的余数为1。或者说,a的φ(n)次方减去1,可以被n整除。比如,3和7互质,而7的欧拉函数φ(7)等于6,所以3的6次方(729)减去1,可以被7整除(728/7=104)。

欧拉定理的证明比较复杂,这里就省略了。我们只要记住它的结论就行了。

欧拉定理可以大大简化某些运算。比如,7和10互质,根据欧拉定理,

已知 φ(10) 等于4,所以马上得到7的4倍数次方的个位数肯定是1。

因此,7的任意次方的个位数(例如7的222次方),心算就可以算出来。

欧拉定理有一个特殊情况。

假设正整数a与质数p互质,因为质数p的φ(p)等于p-1,则欧拉定理可以写成

这就是著名的费马小定理。它是欧拉定理的特例。

欧拉定理是RSA算法的核心。理解了这个定理,就可以理解RSA。

五、模反元素

还剩下最后一个概念:

如果两个正整数a和n互质,那么一定可以找到整数b,使得 ab-1 被n整除,或者说ab被n除的余数是1。

这时,b就叫做a的"模反元素"

比如,3和11互质,那么3的模反元素就是4,因为 (3 × 4)-1 可以被11整除。显然,模反元素不止一个, 4加减11的整数倍都是3的模反元素 {...,-18,-7,4,15,26,...},即如果b是a的模反元素,则 b+kn 都是a的模反元素。

欧拉定理可以用来证明模反元素必然存在。

可以看到,a的 φ(n)-1 次方,就是a的模反元素。

==========================================

好了,需要用到的数学工具,全部介绍完了。RSA算法涉及的数学知识,就是上面这些,下一次我就来介绍公钥和私钥到底是怎么生成的。

(完)

时间: 2024-10-22 02:58:23

(转) RSA算法原理(一)的相关文章

SSH原理与运用(一)和(二):远程登录 RSA算法原理(一)和(二)

SSH原理与运用(一)和(二):远程登录  RSA算法原理(一)和(二) http://www.ruanyifeng.com/blog/2011/12/ssh_remote_login.html http://www.ruanyifeng.com/blog/2011/12/ssh_port_forwarding.html RSA算法原理(一) http://www.ruanyifeng.com/blog/2013/06/rsa_algorithm_part_one.html RSA算法原理(二)

支付宝支付流程与RSA算法原理

支付宝支付流程与RSA算法原理 RSA加密算法的原理 支付宝的三种支付流程 1.所有的支付逻辑处理,全在服务器完成,现在被淘汰了 原理就是电商App吧所有的信息提交给电商服务器,然后又电商服务器与支付宝服务器进行交互 2.所有的支付逻辑处理,是电商APP调用手机的支付宝客户端,然后由支付宝客户端和支付宝服务器进行交互处理. 原理就是电商APP向电商服务器发送请求,然后电商服务器生成订单信息 后,返回给电商APP,电商APP进行付款时,需要进行判断用户有没有支付宝客户端. 如果没有,则不能支付,提

RSA算法原理(一)

来源:http://www.ruanyifeng.com/blog/2013/06/rsa_algorithm_part_one.html 如果你问我,哪一种算法最重要? 我可能会回答"公钥加密算法". 因为它是计算机通信安全的基石,保证了加密数据不会被破解.你可以想象一下,信用卡交易被破解的后果. 进入正题之前,我先简单介绍一下,什么是"公钥加密算法". 一.一点历史 1976年以前,所有的加密方法都是同一种模式: (1)甲方选择某一种加密规则,对信息进行加密:

RSA算法原理(转)

如果你问我,哪一种算法最重要?我可能会回答“公钥加密算法”.因为它是计算机通信安全的基石,保证了加密数据不会被破解.你可以想象一下,信用卡交易被破解的后果. 进入正题之前,我先简单介绍一下,什么是”公钥加密算法”. 一.一点历史 1976年以前,所有的加密方法都是同一种模式: (1)甲方选择某一种加密规则,对信息进行加密: (2)乙方使用同一种规则,对信息进行解密. 由于加密和解密使用同样规则(简称”密钥”),这被称为“对称加密算法”(Symmetric-key algorithm). 这种加密

RSA算法原理1

必备数学知识 RSA加密算法中,只用到素数.互质数.指数运算.模运算等几个简单的数学知识.所以,我们也需要了解这几个概念即可. 素数 素数又称质数,指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数.这个概念,我们在上初中,甚至小学的时候都学过了,这里就不再过多解释了. 互质数 百度百科上的解释是:公因数只有1的两个数,叫做互质数.:维基百科上的解释是:互质,又称互素.若N个整数的最大公因子是1,则称这N个整数互质. 常见的互质数判断方法主要有以下几种: 两个不同的质数一定

RSA算法原理(简单易懂)

1. 什么是RSA RSA算法是现今使用最广泛的公钥密码算法,也是号称地球上最安全的加密算法.在了解RSA算法之前,先熟悉下几个术语 根据密钥的使用方法,可以将密码分为对称密码和公钥密码 对称密码:加密和解密使用同一种密钥的方式 公钥密码:加密和解密使用不同的密码的方式,因此公钥密码通常也称为非对称密码. 2. RSA加密 RSA的加密过程可以使用一个通式来表达 密文=明文EmodN密文=明文EmodN 也就是说RSA加密是对明文的E次方后除以N后求余数的过程.就这么简单?对,就是这么简单. 从

RSA算法原理及实现

参考资料: 阮哥的日志:http://www.ruanyifeng.com/blog/2013/06/rsa_algorithm_part_one.html http://www.ruanyifeng.com/blog/2013/07/rsa_algorithm_part_two.html github的参考代码:https://github.com/buptchi/RSA/blob/master/rsa.py 薄薄的密码学课本:<现代密码学>第二版陈鲁生 等编著 写在前面:在DES之后,又迎

转:RSA算法原理说明

转:http://www.joenchen.com/archives/979 RSA算法可以说在我们使用计算机的每一方面都在发挥着作用, EXE文件的签名算法用的是SHA1 + RSA. 我们每天登陆网银, 使用QQ 无时不刻都在使用着RSA算法. 发明这算法的人, 真心牛逼. 搞这种算法才知道, 数学基础是那么的重要. 尼玛, 以前老师教的时候, 为什么不这样说. 不如是的告诉我们. 工作以后才发现, 在计算机领域数学是必备的学科, 数学学的是否良好. 直接关系到在计算机领域能够专研的深度.

RSA算法原理(二)

上一次,我介绍了一些数论知识. 有了这些知识,我们就可以看懂RSA算法.这是目前地球上最重要的加密算法. 六.密钥生成的步骤 我们通过一个例子,来理解RSA算法.假设爱丽丝要与鲍勃进行加密通信,她该怎么生成公钥和私钥呢? 第一步,随机选择两个不相等的质数p和q. 爱丽丝选择了61和53.(实际应用中,这两个质数越大,就越难破解.) 第二步,计算p和q的乘积n. 爱丽丝就把61和53相乘. n = 61×53 = 3233 n的长度就是密钥长度.3233写成二进制是110010100001,一共有